Electric bus arrangement and method for minimizing the...

Electric power conversion systems – Current conversion – With conductive support mounting

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S724000, C363S141000

Reexamination Certificate

active

06259617

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention concerns an electric bus arrangement for DC-supply of power components, particularly for an inverter, having a first and a second plate, arranged in parallel with each other separated by an isolating layer, by which the first plate connects first connections of power components of a first group with first connections of power components of a second group, and the second plate connects second connections of the power components of the first group with second connections of the power components of the second group. Further, the invention concerns a method for minimising the inductance in an electric bus arrangement for DC-supply of switching power components, by which the current in a first plate of the bus arrangement flows in one direction and the current in a second plate of the bus arrangement, parallel to and arranged adjacent to the first plate, flows in the opposite direction.
In the following the invention is described on the basis of a frequency converter, in the following called inverter, even though it can also be used for other applications. Initially, such an inverter rectifies electrical voltage from the mains and provides it to an intermediary circuit as DC voltage. Normally, coil and capacitors are arranged in the intermediary circuit, which again is connected to a circuit arrangement, which produces a single- or polyphase AC-current through switching on and off switches. E.g. via the frequency the switching arrangement controls the speed of electric single- or polyphase motors. To limit the out-put losses of the inverter, a high switching frequency is required. A special case, concerns a simple inverter by which the DC-voltage comes from another source.
However, a high frequency switching means a heavy temporal current change, i.e. a high di/dt. Correspondingly, high voltage peaks are induced during the switching due to the inductivity of the bus arrangement. The induced voltage peaks result from the known relation v=L·di/dt. It is therefore very important to keep the inductivity L and thus the inductance of the bus arrangement as low as possible.
To keep the inductance low, the conductors of the bus arrangement should be as short, thin and wide as possible. When conductors with the same currents, however flowing in opposite directions, are arranged so that they lie very close to and overlap each other, the magnetic flux generated by the opposite currents can be almost eliminated. In total the magnetic flux around the conductors will be substantially zero. Thus current changes will only cause small flux changes, which drastically reduces the reactance or the inductance of the bus conductors.
It is therefore commonly known to laminate the bus arrangement, i.e. provide it with a positive conductor, an isolating layer and a negative conductor, which are arranged to overlap each other. These conductors or bus bars carry currents with the same amplitudes and opposite directions from and to the capacitor arrangement in order to eliminate the magnetic flux generated through the switching currents in the bus bars.
E.g. JP 62 040069 A describes a laminated bus bar arrangement with a fitted capacitor. The bus bar arrangement has legs or extensions connecting to the power components. However, these connection legs have different lengths, as the legs of the negative plate project by at least the thickness of the bus arrangement. Additionally, the capacitor is fitted on legs projecting from the bus arrangement, by which the capacitor is fitted on an edge of the bus arrangement, which requires more space.
A different bus arrangement is known from U.S. Pat. No. 5,132,896. Also here the bus bars are made as plates, i.e. a positive plate connecting power switch poles with capacitor poles, and a negative plate connecting the remaining power switch poles with the remaining capacitor poles. The negative and positive plates are separated by an isolating layer, and fitted on the power components by screws. A characteristic feature of this construction is that the bus bars are used for both current transfer and heat dissipation.
JP 04 133669 A shows a laminated bus bar arrangement with a positive and a negative plate, an isolating plate and an intermediary plate. This intermediary plate is used to connect two capacitors in series. For this purpose the intermediary plate is arranged in the same plane as the positive plate. The bus plates serve as connectors between the capacitor and a rectifier and as conductor between the capacitor and the switches, when the capacitors deliver their energy through the switches.
In prior art bus arrangements (in the following, “bus arrangement” must be understood as an arrangement of conductors), a high degree of flux minimising has already been obtained. However, large areas appear in the bus arrangements, in which the bus plates do not overlap each other and thus do not contribute to the flux reduction. These “blind” spots are found in the areas, in which the power components are connected with the bus plates. In the mentioned U.S. Pat. No. 5,132,896 the end of the negative plate is Z-shaped and is fitted on the first poles of the power components, while the end of the positive plate is also Z-shaped. The positive plate is fitted parallel and close to the negative plate. However, it projects over the negative plate to reach the second poles of the power components. As the positive plate is longer than the negative plate, an area appears, which can no longer be neglected, in which the compensation for the magnetic flux is missing, which occurs during the current transfer from the capacitor to the power components. Further, a magnetic flux is generated through an inductive current flowing transversely, viz. from one collector to another, which is not compensated. This missing compensation causes a limitation on the switching frequencies. As mentioned above, the parasitic reactances cause overvoltages exceeding the nominal data of the power components. This will lead to either a reduction of the life or even to a damaging of the power components.
SUMMARY OF THE INVENTION
It is the task of the invention to enable an increase of the switching frequency without endangering the power components.
In an electric bus arrangement as mentioned in the introduction, this is solved in that, in the area of the power components of the second group, the first and the second plates branch into connection extensions each directed in different directions, and that, from the meeting point of the connection extensions the first and the second plates are arranged in parallel.
This results in the mutual overlapping of the two plates in the current-carrying area extending until the branching. Only from the branching does the elimination of the magnetic flux through oppositely flowing currents no longer take place. However, as only connection extensions, and not whole plate areas, are concerned, these non-compensated conductor areas are relatively small.
Preferably, the connection extensions are placed in a plane, which is not parallel to the plane to which the plates are parallel. In other words, two requirements are combined here. Firstly, the connection extensions must be placed in a plane, which is common for the connection extensions of the first and the second plates. However, this plane is not equal to the plane, in which the two plates of the bus arrangement are placed. This gives a geometric decoupling. The connection extensions offer sufficient space for the fitting of the power components. For this purpose the plates are projecting in an angle.
Preferably, the connection extensions are arranged at an angle of 90° in relation to the plates. This enables placing the branching point of the two plates in the same geometrical plane as defined by the connections or the poles of the power components. Further, this embodiment enables arrangement of the two plates vertically to this plane, involving the advantage that all other components, e.g. the power components of the first group, fixed on the plates, can be more easily a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electric bus arrangement and method for minimizing the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electric bus arrangement and method for minimizing the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electric bus arrangement and method for minimizing the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2552267

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.