Optical: systems and elements – Optical modulator – Light wave temporal modulation
Reexamination Certificate
1997-06-11
2001-10-16
Lester, Evelyn A (Department: 2873)
Optical: systems and elements
Optical modulator
Light wave temporal modulation
C359S573000, C359S530000, C359S290000, C345S084000, C345S108000
Reexamination Certificate
active
06304364
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to apparatus that controls the passage of electromagnetic radiation. More particularly, the invention relates to a system for controlling the amount of passage of light including an elastomeric article having a contoured surface that essentially entirely reflects light, but can be deformed to pass light, or a contoured surface that, when deformed, alters the amount of an opaque fluid residing adjacent the surface thereby controlling the passage of light.
BACKGROUND OF THE INVENTION
Controlling the passage of light is desirable in a variety of settings. For example, articles such as windows or sunglasses are desirably made in a manner allowing blockage or passage of light, controllably, to provide a desired amount of shade from sunlight. Optical displays are constructed and arranged to produce, or allow passage of, light in a predetermined, recognizable pattern, symbol, or series of symbols, for example in the form of written text, an advertisement or other sign. A variety of other systems are known for use in modulation, sensing, and recording using light.
Some known optical control systems or sensors use flexible components and/or fluids. U.S. Pat. No. 3,641,354 (De Ment) describes a system for optical modulation for use with optical computers, data processing, and optical information processing systems that includes a container, having at least one flexible wall, into which and out of which a liquid or gas can be pumped. One or more flexible walls of the container can be made convex or concave depending upon the fluid pressure within the container relative to fluid pressure outside of the container, or can be altered in configuration in other ways to focus, reflect, or otherwise alter light from a laser or incoherent light source.
U.S. Pat. No. 4,382,657 (Lemaitre) provides astronomical mirrors or aspherical gratings defined by a thin disk, having a reflecting surface, and a cylindrical ring on a support that is essentially parallel to and supports the disk, the system forming a cavity defined on one side by the disk. Control of the pressure of a fluid within the cavity, relative to pressure outside of the system, causes elastic flexion of the disk to create a concave or convex lens.
U.S. Pat. No. 4,274,706 (Tangonan) describes a flexible, reflective diffraction grating, for example made from a sheet of grooved, acetate plastic film including a reflective aluminum coating, positioned at a convexly-curved end of a waveguide. Light introduced through an input/output surface at an opposite end of the waveguide propagates to the curved end at which the grating is positioned, and light is diffracted by the grating and focused by the curved end back into the input/output end of the waveguide. The system can act as a coupler for wavelength multiplexing or demultiplexing of multimode optical signals in optical circuits.
U.S. Pat. No. 3,716,359 (Sheridon) describes the use of elastomers in various imaging systems for cyclic recording, storage, and erasure of optical information. One system involves a transparent substrate, optionally including an optically reflective surface, a conductive layer on the substrate, a photoconductive layer on the conductive layer, and an elastomer layer on the photoconductive layer. The system makes use of the properties of elastomeric imaging devices in which frost images, screened frost images, and limited spatial frequency or holographic images can be produced. A corona discharge can be used to charge, in a selective manner, a surface of the elastomer and optionally the substrate thereby creating an electrical field across the photoconductor and elastomer combination. Where the photoconductor is exposed to light, the electric field is altered resulting in a mechanical force that deforms the elastomer. Sheridon states that the system can be used for large panel displays.
U.S. Pat. No. 4,897,325 (Akkapeddi) describes a flexible mask for use in photolithography. The flexible mask is made by providing a flexible substrate such as 20-50 mil thick glass, a metallic layer on the glass, and a photoresist layer on the metallic layer, patterning the photoresist layer via known techniques, and developing the mask by selectively removing portions of the metal film resulting in a pattern of metal film on the flexible glass film. The flexible mask can be made to conform to a nonplanar structure including a layer of photoresist on a nonplanar surface, and irradiation through the mask, followed by development, can result in a pattern of photoresist on the nonplanar surface which can be followed by additional development resulting in an ultimate desired patterned, nonplanar surface.
International Pat. Publication WO 96/29629 (Whitesides, et al.) describes encapsulation of a liquid metal within a cavity of a flexible material such as an elastomer. Where the interior surface of the cavity is complementary to a diffraction grating surface, the liquid metal can define a flexible diffraction grating. The interior surface can be of another optically-interesting shape, such as a convex or concave shape, to form a liquid metal into a desired optical surface.
Liquid crystals are well-known for use in displays. In typical liquid crystal display systems, a liquid crystalline material is provided in a chamber across which an electric field can be applied. Plane-polarized light is directed at the liquid crystalline material and, when the material is made to align with the plane-polarized light, via application of an electric field, the light passes through the material. Where an electric field is not applied the liquid crystalline material does not align with the plane of the polarized light, and light passage is blocked. These and other types of liquid crystalline systems find widespread use as displays.
The above and other disclosures are representative of advancements in certain fields of optical modulation. It is an object of the invention to provide a new class of relatively inexpensive and non-complex optical modulation systems.
SUMMARY OF THE INVENTION
The present invention provides a series of methods and systems for controlling electromagnetic radiation. In one aspect the invention involves a method including arranging a fluid in a first fluid pattern and allowing electromagnetic radiation to interact with the fluid in the first fluid pattern and to emerge from the interaction in a first identifiable electromagnetic radiation pattern. The fluid is redistributed, according to the method, so as to alter the first fluid pattern to a second fluid pattern. Electromagnetic radiation is allowed to interact with the fluid in the second fluid pattern and to emerge from the interaction in a second identifiable electromagnetic radiation pattern.
In another aspect the invention involves a method of establishing a path of electromagnetic radiation in a flexible article and allowing the path of electromagnetic radiation to emanate from the flexible article in a first amount. The amount of electromagnetic radiation emanating from the flexible article is changed from the first amount to a second amount by changing the configuration of the flexible article.
The invention provides, according to another aspect, a method of controlling an identifiable electromagnetic radiation pattern. An assembly is provided that includes a fluid which is at least partially opaqued to the electromagnetic radiation and is contained in a cavity. A first identifiable pattern of electromagnetic radiation is established by arranging the fluid within the cavity in a first fluid pattern, exposing at least a portion of the assembly to electromagnetic radiation, and allowing a portion of the electromagnetic radiation to be blocked by the at least partially opaque fluid while another portion of electromagnetic radiation is allowed to pass through the assembly and to emanate from the assembly in a first pattern. The first pattern of electromagnetic radiation is identified, and then the first pattern is prevented from emanating from the assembly by alterin
Qin Dong
Whitesides George M.
Xia Younan
Lester Evelyn A
President & Fellows of Harvard College
Wolf Greenfield & Sacks P.C.
LandOfFree
Elastomeric light valves does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Elastomeric light valves, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Elastomeric light valves will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2610398