Electrical connectors – Including elastomeric or nonmetallic conductive portion – Adapted to be sandwiched between preformed panel circuit...
Reexamination Certificate
2003-02-20
2004-06-22
Paumen, Gary (Department: 2833)
Electrical connectors
Including elastomeric or nonmetallic conductive portion
Adapted to be sandwiched between preformed panel circuit...
Reexamination Certificate
active
06752639
ABSTRACT:
CROSS REFERENCE TO RELATED APPLICATIONS
Not Applicable
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable
BACKGROUND OF THE INVENTION
The present invention relates generally to electrical connectors and more specifically, to an interconnecting device suitable for interconnecting circuit boards, a circuit board and an electrical device or two electrical devices.
Connectors are commonly used to interconnect circuit boards or to interconnect a circuit board with an electrical device such as a microphone or other transducer. In some applications, it is advantageous to make an electrical interconnection without soldering or the use of terminals that require a manual or a machine operation to make the desired connections. Known elastomeric connectors allow interconnections to be readily made without soldering or terminals that involve a physical attachment and can provide advantages in the assembly of electronic equipment in many applications.
Elastomeric connectors include elastomeric conductors which are physically retained or arranged in a predetermined pattern which corresponds to a desired contact pattern on a mating circuit board or device. Electrical contacts on a circuit board or device may be plated to improve the conductive contact between circuit board or device and the conductors of the elastomeric connector. The elastomeric connector is aligned between two circuit boards, a circuit board and a device, or any two objects to be electrically interconnected and compressed so that respective conductive members are urged into compressive contact with the respective mating contacts. The compression of the elastomeric conductors against the electrical contact forms an effective conductive connection and avoids complexities and manufacturing costs that are often associated with other types of connectors that require physical connections to be made.
Examples of elastomeric connectors known in the art are shown in U.S. Pat. Nos. 4,955,818; 5,340,318; 5,816,838; 5,820,391 and 6,019,609.
One elastomeric connector assembly known in the art includes an elastomeric connector including alternating conductive and non-conductive members and a supporting boot that is molded around the connector. The molding of the supporting boot around the connective portion is typically accomplished via an insert molding process. In this process, the connector is aligned within a mold and the boot is molded around the connector to form the connector assembly. The final connector assembly may then be mounted in the intended equipment during an equipment assembly process.
It would be desirable to provide a boot for an elastomeric connector that may be first fabricated to allow for the later installation of an elastomeric connector having a predetermined contact pattern. Such a process and boot design requires less complex tooling than is needed to produce an assembly via an insert molding process and advantageously allows large scale assembly operations. Additionally, such a process would permit different connector configurations to be inventoried and employed within a single support frame as needed for particular applications.
BRIEF SUMMARY OF THE INVENTION
In accordance with the present invention, a supporting boot for an elastomeric connector, an elastomeric connector, an elastomeric connector assembly, and a method for producing the same are disclosed. The elastomeric connector includes alternating conductive and non-conductive members. Alternatively, conductive members that extend through an insulative body may be provided in any desired pattern.
The supporting boot or body is molded and has a structure that facilitates the subsequent insertion and mounting of the elastomeric connector in a through-hole provided in the boot. More specifically, the supporting boot has first and second opposing surfaces. The through-hole extends through the boot from the first surface to the second surface. In one embodiment, the through-hole is generally rectangular although the through-hole may have any cross-sectional shape that corresponds to the cross-sectional shape of an associated connector to be mounted within the through-hole of the boot. The through-hole includes first and second through-hole portions adjacent the first and second boot surfaces respectively. The through-hole portion adjacent the second boot surface has a cross-section that is sized to provide an “interference” or “line” fit with tile elastomeric connector when the connector is inserted in installed in the through-hole within the boot. The first through-hole portion has a cross section that is slightly larger than the cross section of the elastomeric connector to provide a channel between the boot surfaces defining the first through-hole portion and the opposing surfaces of the elastomeric connector when the connector is installed in the mounting position in the through-hole of the boot.
A taper is provided between the surfaces of the first and second through-hole portions to serve as a guide and to facilitate the insertion of the connector through the through-hole of the boot. A tapered guide ridge that extends from the first surface of the boot and extends around the through-hole is also provided to serve as a guide for the connector during the installation of the connector into the supporting boot.
Ribs that extend from the surfaces defining the first through-hole portion are provided. The ribs have an outer end that abuts the elastomeric connector when the connector is installed within the boot to assure the alignment of the connector within the boot while not materially obstructing the channel surrounding connector. Recesses are provided in the first surface of the supporting boot on opposing sides of the through-hole. The recesses are communicative with the channel. To permanently secure the elastomeric connector within the supporting boot a binding agent such as an adhesive, glue or other suitable material is introduced into the respective recesses by injection or otherwise. The binding agent has a viscosity that permits the material to flow around the connector through the above referenced channel. Following the curing of the binding agent, the elastomeric connector is permanently secured within the supporting boot.
Other aspects, features and advantages of the invention will be apparent to those of ordinary skill in the art from the Detailed Description of the Invention that follows.
REFERENCES:
patent: 4955818 (1990-09-01), Strange et al.
patent: 5297968 (1994-03-01), Johnson et al.
patent: 5340318 (1994-08-01), Kunihiro
patent: 5745346 (1998-04-01), Ogawa et al.
patent: 5816838 (1998-10-01), Del Prete et al.
patent: 5820391 (1998-10-01), Delprete et al.
patent: 6019609 (2000-02-01), Strange
patent: 6166615 (2000-12-01), Winslow et al.
patent: 6549636 (2003-04-01), Fujimoto et al.
Kirkman Michael
Kiszka Joseph A.
Knaub Curtis G.
Shukla Vishwa Nath
Paumen Gary
Tyco Electronics Corporation
LandOfFree
Elastomeric connector assembly and method for producing the... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Elastomeric connector assembly and method for producing the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Elastomeric connector assembly and method for producing the... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3351880