Elastomer blend and use in tires

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C525S198000, C525S240000, C525S241000, C152S450000

Reexamination Certificate

active

06232404

ABSTRACT:

FIELD
The invention relates to utilization of a specialized pre-blend of high viscosity and low viscosity elastomers in rubber compositions. It particularly relates to preparation and use of a pre-blend of high and low viscosity elastomers by blending individual latices or, alternatively, by blending individual polymerizate cements of elastomers of diverse viscosities. Use of such pre-blends is contemplated for rubber compositions as tire components, including tire tread rubber compositions.
BACKGROUND
High viscosity elastomers are often used in tire tread rubber compositions. Such elastomers have a very high Mooney (ML4) viscosity value in their unvulcanized state in a range of, for example, about 70 to about 140. Elastomers of such high viscosity are typically difficult to process for preparation of rubber compositions because it is very difficult to mix rubber compounding ingredients such as, for example, carbon black and silica reinforcing fillers, in high viscosity rubber. This problematic aspect is well known to those having skill in such art.
In order to facilitate the processing of a high Mooney viscosity for rubber compositions such as tire tread stocks, namely the mixing and extrusion of the rubber composition, it is somewhat customary to use such elastomer as a pre-blend with a rubber processing oil to reduce its Mooney (ML4) viscosity to a more processable level such as, for example, in a range of about 45 to about 55. Such technique is well known to those having skill in such art.
However, it is considered herein that such use of a rubber processing oil can be disadvantageous because such oil may be substantially saturated hydrocarbon based and, thus, not participate in the vulcanization of the rubber composition. It thereby becomes somewhat of a diluent for the rubber composition and its resulting physical properties.
Liquid elastomers have also sometimes been used for such purpose with similar difficulties where the elastomers are substantially saturated in nature.
In the description of this invention, the term “phr” where used herein, and according to conventional practice, refers to “parts of a respective material per 100 parts by weight of rubber”. Usually parts and percentages, where used herein, are in terms of weight unless otherwise noted.
A latex, insofar as this invention is concerned, is normally prepared by polymerizing diene monomers, optionally also with styrene,in a water-based medium, usually as an emulsion accompanied with suitable emulsifiers, with a free radical catalyst activators(s). Often a redox polymerization system is used. Descriptions of various polymerizations may be found, for example, in U.S. Pat. No. 3,080,334; in
Synthetic Rubber
by G. S. Whitby, 1954, particularly Chapter 8 and
Emulsion Polymerization
by F. A. Bovey et al, Vol. IX of “High Polymers”, Interscience Publishers, Inc., 1955. Various organic initiators are described by J. Brandrup et al,
Polymer Handbook
(John Wiley & sons), 1965, pages II-3 to II-51. The resulting latex is then coagulated to recover the elastomer. Standard coagulation techniques, such as salt-acid coagulation procedures, can be employed. For example, a styrene/butadiene copolymer elastomer can be prepared by such aqueous emulsion polymerization process. The Mooney viscosity of the resulting copolymer can be controlled to some degree by the various polymerization parameters so that such copolymer of a relatively high Mooney or of a relatively very low Mooney (ML4) value can be prepared. It is believed that such aqueous emulsion polymerization processes are well known to those having skill-in such art.
By the term “polymerizate”, “cement” or “polymerizate cement” where used herein, it is meant that it is the product of individually polymerizing monomers selected from at least one conjugated diene or at least one conjugated diene with an aromatic vinyl compound such as, for example, styrene and/or alpha-methylstyrene, in the presence of catalyst initiator(s) and in an organic solvent and stopping the actual polymerizing of the monomers but before the resulting polymer is removed from the polymerizate.
The terms such as “compounded rubber”, “rubber compound” and “rubber composition” relate generally to “rubber which has been mixed with various rubber compounding ingredients”. Such terms are well known to those skilled in the rubber mixing art, especially for tires.
The terms “vulcanized”, “vulcanize”, “cured” and “cure”, if used herein, are used interchangeably to refer to the “vulcanization of rubber” and such terms are well known to those having a skill in the rubber vulcanization art.
The term “Tg”, if used herein, refers to the “glass transition temperature of a particular elastomer”. Glass transition temperatures are well known characterizations of elastomers. They may, for example, be suitably determined by a differential scanning calorimeter (DSC) instrument with a heating rate of 20° C. per minute.
The term “Mooney viscosity” where used herein, unless otherwise specified, may be referred to as an (ML4) viscosity and refers to “a viscosity of an elastomer in its uncured state, and without appreciable additives dispersed therein other than antidegradants, measured by (or according to) ASTM Test Method D1646 conducted at 100° C”. Sometimes the test is referred to as ML1+4, a shorthand for meaning Mooney Large (using the large rotor) with a one minute static warm-up before determining the viscosity after four minutes. As used herein, a ML4 viscosity measurement is intended to mean the ML1+4 viscosity measurement.
SUMMARY AND PRACTICE OF THE INVENTION
In accordance with this invention, a method of preparing an elastomer composition is provided which comprises the steps of (A) blending (1) a first latex of a diene-based elastomer having a Mooney (ML4) viscosity in a range of about 70 to about 140 with an additional latex of a diene-based elastomer having a Mooney (ML4) viscosity in a range of about 5 to about 20 or (2) a first polymerizate of a diene-based elastomer having a Mooney (ML4) viscosity in a range of about 70 to about 140 with an additional polymerizate of a diene-based elastomer having a Mooney (ML4) viscosity in a range of about 5 to about 20, followed by (B) drying and recovering the resulting elastomer blend; wherein the weight ratio of said first high viscosity elastomer to said additional low viscosity elastomer is in a range of about 20/1 to about 1/1.
The above recovered elastomer blend of this invention may be referred to herein as a pre-blend.
Significant aspects of this invention are that the said additional low viscosity elastomer is not a liquid elastomer and, further, that said high viscosity first elastomer and said low viscosity additional elastomers have spatially defined Mooney (ML4) viscosities that differ from each other by a value of at least 50.
In one aspect of the invention, it is preferred, and usually required, that the pre-blend, does not contain any appreciable amount (i.e. preferably zero, although alternatively less than ten, weight percent based on the blend) of any elastomer having a Mooney (ML4) viscosity intermediate to the said viscosity ranges of said first and additional elastomers of the blend, namely a viscosity value in a range between 20 and 70.
It is to be appreciated that the blend, or pre-blend, is required to be composed of at least about 66 weight percent of the said first, high viscosity, elastomer, insofar as the elastomer pre-blend is concerned.
It is also to be appreciated that both the first and additional elastomers are prepared by either (1) polymerization of monomers in the presence of a catalyst initiator(s) in an organic solvent to create a polymerizate thereof and that, for the purposes of this invention, it is the individual polymerizates which are blended together or by (2) providing latices of the diverse elastomers and blending them together.
The diene-based elastomers for said first and second elastomers are selected from homopolymers and copolymers of conjugated dienes such as, for example, isoprene and 1,3-butadie

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Elastomer blend and use in tires does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Elastomer blend and use in tires, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Elastomer blend and use in tires will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2461923

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.