Rotary shafts – gudgeons – housings – and flexible couplings for ro – Electrical or magnetic coupling
Reexamination Certificate
2001-06-21
2004-08-10
Browne, Lynne H. (Department: 3679)
Rotary shafts, gudgeons, housings, and flexible couplings for ro
Electrical or magnetic coupling
C464S100000, C464S088000
Reexamination Certificate
active
06773352
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS
The present application claims priority under 35 U.S.C. § 119 of German Patent Application No. 100 29 564.9, filed on Jun. 22, 2000.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an elastomer bearing for damping or decoupling vibrations between neighboring components. The elastomer bearing includes a spring body made of an elastomer material, e.g., rubber, that is connected on at least one of its two face ends to a connection part, e.g., a metallic connection part, for fastening.
2. Discussion of Background Information
Such spring elements, which can be constructed in a relatively simple manner, are used, for fastening components or aggregates in a vibration-isolating manner in order to protect them from damaging vibrations or shocks or to prevent vibrations originating there from being transferred to other components. The fastening of such spring elements always occurs by screw connections, with the connection parts of the spring element either having an inner thread formed inside them or attached to them in the form of nuts or carrying stud bolts with an outer thread.
Rubber-metal spring elements whose rubber bodies can have hollow spaces for influencing their stiffness and in which the connection elements are provided with bores for attaching separate screws are known, for example, from German Gebrauchsmuster No. 19 01 501.
Hydraulically damped bearings are known, for example, from German Patent No. 34 41 592 C2, in which, in addition to the damping of vibrations by rubber elements, a hydraulic fluid is also used to damp such that, when the bearing is loaded, the fluid flows through particular throttle cross-sections. Using this construction, the bearing can often be configured to various frequency ranges.
One disadvantage of all of these bearings is that the ability to switch and the ability to adjust or regulate with regard to the damping rate or force and to different vibration frequencies cannot be achieved at all or can only be achieved with a very high expense.
SUMMARY OF THE INVENTION
The instant invention substantially prevents the disadvantages that have been known up to now and provides an adjustable or regulatable elastomer bearing that is simple and cost-effective to produce but which can be regulated precisely and with simple devices.
Therefore, in accordance with the features of the instant invention, the elastomer bearing includes a frictional damper that is connected in a parallel manner and may be regulated electrically and/or electronically.
Accordingly, the elastomer bearing has an electrically and/or electronically regulatable frictional damper. Advantageously, the spring body is constructed in the form of a hollow cylinder and has on both of its face ends metallic connection parts in the shape of discs which essentially close the hollow space. The regulatable frictional damper is then arranged in the interior of the hollow space and connected to both connection parts.
Advantageously, the regulatable frictional damper includes at least two damper elements, each fastened on a connection part and protruding into the hollow space, that are adjacent by way of a partial region and rest against one another in such a way that they are displaceable in the force transfer direction. A frictional pairing may then be activated by applying electrical energy between the damper elements.
A particularly advantageous manner of activating the frictional pairing includes that at least one of the damper elements, which is attached to a connection part and protrudes into the hollow space, has a piezo-electrically active surface at least in a partial region adjacent to the other damper element. When energy is applied, the piezo-electrically active surface deforms in the direction of the surface of the other damper element, whereby the surfaces come into frictional contact with each other. Further, the strength of the frictional force is easy to regulate using the amount of piezo-electric deformation and, therefore, the energy supply. Especially with such a construction, it is advantageous for the damper elements to be constructed as cylinders and hollow cylinders that can be moved one into the other, and for the partial regions of the damping element to be formed as a cylinder that is insertable into the other damping element formed as a hollow cylinder. In this regard, the partial region can include, e.g., the piezo-electrically active surface. If the corresponding cylinder region then “thickens” after the supply of energy, the frictional pairing comes into effect.
Another advantageous construction includes that at least one of the damper elements, each of which is attached to a connection part and protrudes into the hollow space, have at least one electromagnet at least in the region adjacent to the other damper element and the other damper element which protrudes into the hollow space is formed as a metallic anchor in its adjacent partial region. By applying electrical energy, it is possible to activate a frictional pairing between the electromagnet and the anchor. The intensity of the frictional force can be easily regulated using the energy supply in such a construction as well.
In another advantageous construction, the regulatable damper elements can also include elastomeric material, with at least one element having piezo-ceramic components or embedded piezo crystals in its partial region adjacent to the other damper element, which deforms the surface to such an extent that a frictional pairing occurs.
Another advantageous construction includes the damper elements constructed as adjacent plates and, optionally, being additionally supported during their relative movement in the frictional pairing by guide devices such that the normal forces acting on the surfaces can be easily absorbed.
The instant invention is directed to a bearing for damping or decoupling vibrations between adjacent components. The bearing includes a spring body having face ends, a connection part coupled to at least one of the face ends, and a frictional damper coupled in a parallel manner with the spring body. The frictional damper is at least one of electrically and electronically regulatable.
In accordance with a feature of the present invention, the spring body may include an elastomeric material. Further, the elastomer material may include rubber.
According to another feature of the instant invention, the connection part can include a metallic connection part.
Moreover, the spring body can include a hollow cylinder. Disc-shaped connecting parts can be coupled to each of the face ends, thereby essentially closing a hollow space within the hollow cylinder, and the frictional damper may be arranged within the hollow space and can be coupled to connected to the disc-shaped connecting parts. The disc-shaped elastomer connecting part may include metallic connecting parts. Further, the frictional damper can include at least two damping elements, which are coupled to the disc-shaped connecting parts and which may be arranged to protrude into the hollow space. A partial region of one of the at least two damping elements may be displaceably positioned against another of the at least two damping elements. The at least two damping elements can be displaceable in a force transfer direction. A frictional pairing can be activated by applying electrical energy between the at least two damping elements. Each of the at least two damping elements can be fastened to a connecting part and can be arranged to protrude into the hollow space. At least one of the at least two damping elements can have a partial region including a piezo-electrically active surface positioned adjacent to another of the at least two damping elements. The piezo-electric active surface may be deformable in a direction of a surface of the another damping element by an application of electrical energy, thereby activating a frictional pairing. At least one of the at least two damping elements may include an elastomeric material and the partial region of the one da
Härtel Volker
Tschimmel Jürgen
Browne Lynne H.
Continental Aktiengesellschaft
Dunwoody Aaron
Greenblum & Bernstein P.L.C.
LandOfFree
Elastomer bearing does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Elastomer bearing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Elastomer bearing will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3289594