Elastic suspension for a hydraulic unit in a motor vehicle...

Spring devices – Resilient shock or vibration absorber – Including energy absorbing means or feature

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C248S638000, C303S113400

Reexamination Certificate

active

06296236

ABSTRACT:

The invention is based on an elastic bearing of a hydraulic subassembly of a vehicle brake system.
The reference EP 0 456 991 B1 has disclosed an elastic bearing of a hydraulic subassembly, which is used, for example, for a wheel brake slip limitation, a drive slip limitation through the braking of wheels that can be driven, or through another type of automatic braking such as braking to produce yawing moments for the purpose of improving the driving behavior of a vehicle. The elastic bearing is comprised of three rubber elastic elements in the form of hollow cylindrical components, three pins that project from the subassembly, extend into the rubber elastic elements, and are aligned lying parallel in an essentially horizontal plane, as well as a bracket with two vertically protruding support arms and, formed onto these, lower partial shells into which the rubber elastic elements are inserted at least halfway, and stationary upper partial bearing shells, which cover over the rubber elastic elements. In order to fix the upper partial bearing shells in relation to the lower partial bearing shells, the upper partial bearing shells are embodied in the form of disk pieces that are aligned in relation to the lower partial bearing shells along their longitudinal axes and are slid over the rubber elastic elements. To this end, U-guide profiles that are aligned axially parallel can be formed onto the upper partial bearing shells and these U-guide profiles grasp guide arms that protrude from the lower partial bearing shells. In the circumference direction of the upper partial bearing shells, another exemplary embodiment has continuations that are closed into a tube so that when the essentially tubular components are slid on along the lower partial bearing shells and along the rubber-like elastic elements, both these rubber-like elastic elements and the lower partial bearing shells are encompassed in ring fashion. It is clear that the more difficult it is to slide the upper partial bearing shells on and to slide them along over the rubber elastic elements, the tighter the rubber elastic elements have to be grasped by the partial bearing shells.
The reference EP 0 699 571 A1 has disclosed another elastic bearing of a hydraulic subassembly of a vehicle brake system. This elastic bearing has three rubber elastic elements that are embodied essentially as hollow cylinders, which are slid into blind holes of the hydraulic subassembly, wherein two of the blind holes are disposed on opposite sides of the hydraulic subassembly and a third, essentially vertically aligned blind hole can be let into an underside of the hydraulic subassembly.
ADVANTAGES OF THE INVENTION
The elastic bearing of a hydraulic subassembly of a vehicle brake system has the advantage that upper partial bearing shells can be conveniently mounted in essentially the same mounting direction as the hydraulic subassembly in relation to the support arms. As a result, the upper partial bearing shells can be mounted and pressed essentially radial to the rubber elastic elements. This mounting direction practically prevents axial relative movements of the upper partial bearing shells in relation to the rubber elastic elements so that sliding forces that serve to overcome friction forces are avoided.
The improvements herein produce the advantage of a mechanical alignment of the upper partial bearing shells relative to the lower partial bearing shells before the upper partial bearing shells are pressed against the rubber elastic elements.
The improvements herein yield inexpensively producible fixing means which are used to fix the position of the upper partial bearing shells relative to the lower partial bearing shells. The improvements herein produce an exemplary embodiment for the upper partial bearing shells made of metal, wherein this kind of metal upper bearing shells can be manufactured using a known stamping and bending technique. Other improvements disclose an example of the manner in which the detent projections can be associated with the upper partial bearing shells. Still other improvements produce a suitable exemplary embodiment of how the detent projections can be manufactured using the stamping and bending technique. Further improvements produce a further exemplary embodiment for the association of at least one detent projection with an upper partial bearing shell. In this exemplary embodiment, the mounting of the upper partial bearing shell begins with a hooking-in so that when pressing the upper partial bearing shell against a rubber-like element, an assembler merely has to monitor the snapping-in of a detent projection into a detent opening.
The improved features assume the advantage with regard to the strength of a fixing, which advantage results from the grasping of lower partial bearing shells, with the advantage of the essentially radial mounting direction of the upper partial bearing shells according to the invention. When the upper partial bearing shells are brought toward the rubber elastic elements or the lower partial bearing shells, the upper partial bearing shells are aligned at a slight angle so that the fixing brackets can be lowered in relation to the lower partial bearing shells and finally, can be pivoted under the lower partial bearing shells by pressing the rubber elastic elements together. The features set forth herein disclose an exemplary embodiment for fixing the position of the fixing bracket so that it remains in the fixed position. The exemplary embodiment can be manufactured in a technically inexpensive manner as a one-piece thermoplastic component. Other features set forth herein disclose another exemplary embodiment in which the positional fixing of the fixing bracket takes place by means of a tab and a detent projection, which are disposed on the respective support arm.
Different features set forth herein make use of the elasticity of a thermoplastic material from which the fixing brackets can be manufactured, by means of which the fixing bracket and an elastically resilient detent projection can be produced at the same time and therefore inexpensively.
Still different features produce a captive attachment of the two rubber elastic elements to the sides of the hydraulic subassembly with the advantage that a hydraulic subassembly of this kind can be manufactured with the rubber elastic elements on an assembly line and is consequently prepared for installation in a vehicle at a distant location.


REFERENCES:
patent: 1551516 (1925-08-01), McGovern
patent: 4618114 (1986-10-01), McFarland
patent: 5066076 (1991-11-01), Troster
patent: 5104072 (1992-04-01), Kuo
patent: 5195717 (1993-03-01), Benz
patent: 5588375 (1996-12-01), Cotterill
patent: 5658056 (1997-08-01), Rischen
patent: 5850996 (1998-12-01), Liang
patent: 0 456 991 B1 (1991-11-01), None
patent: 0 699 571 A1 (1996-06-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Elastic suspension for a hydraulic unit in a motor vehicle... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Elastic suspension for a hydraulic unit in a motor vehicle..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Elastic suspension for a hydraulic unit in a motor vehicle... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2603130

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.