Elastic films including crystalline polymer and...

Stock material or miscellaneous articles – Composite – Of addition polymer from unsaturated monomers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S517000, C428S910000, C525S240000, C525S241000

Reexamination Certificate

active

06500563

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to elastic films comprising at least one and preferably two polyolefin thermoplastic components.
BACKGROUND
Ethylene—propylene copolymers and blends of isotactic polypropylene and ethylene propylene rubber are well known in the prior art. However, the traditional Ziegler-Natta catalysts used to make the ethylene propylene elastomer have limitations. Thus polymers which are simultaneously uniform in compositional distribution, have substantially stereospecific propylene residues and have less than 35 wt. % ethylene are not available with these catalysts. These limitations in the synthesis have lead to the absence of elastic films from blends of ethylene propylene copolymers and isotactic polypropylene.
U.S. Pat. No. 3,882,197 describes blends of stereoregular propylene/alpha-olefin copolymers, stereoregular propylene, and ethylene copolymer rubbers.
U.S. Pat. No. 3,888,949 suggests the synthesis of blend compositions containing isotactic polypropylene and copolymers of propylene and an alpha-olefin, containing between 6-20 carbon atoms, which have improved elongation and tensile strength over either the copolymer or isotactic polypropylene. Copolymers of propylene and alpha-olefin are described wherein the alpha-olefin is hexene, octene or dodecene. However, the copolymer is made with a heterogeneous titanium catalyst resulting in copolymers with non-uniform composition distribution and a broad molecular weight distribution. Non-uniform intramolecular compositional distribution is evident in U.S. Pat. No. 3,888,949 by the use of the term “block” in the description of the polymer where the copolymer is described as having “sequences of different alpha-olefin content.” Within the context of the invention described above the term sequences describes a number of olefin monomer residues linked together by chemical formed during polymerization.
U.S. Pat. Nos. 4,461,872, improved on the properties of the blends described in 3,888,949 by using another heterogeneous catalyst system which is expected to form copolymers which have statistically significant intermolecular and intramolecular compositional differences.
Two successive publications in the journal of Macromolecules, 1989, V22, pages 3851-3866, described blends of isotactic polypropylene and partially atactic polypropylene which purportedly have desirable tensile elongation properties. However, the partially atactic propylene has a broad molecular weight distribution as shown in FIG. 8 of the first publication. The partially atactic polypropylene is also composed of several fractions, which differ in the level of tacticity of the propylene units as shown by the differences in the solubility in different solvents. This is shown by the corresponding physical decomposition of the blend which is separated by extraction with different solvents to yield individual components of uniform solubility characteristics as shown in Table IV of the above publications.
More recently several authors have shown the formation of more refined structures of partially atactic, partially isotactic polypropylene which have elastomeric properties. It is believed that in these components each molecule consists of portions which are isotactic and therefore crystallizable while the other portions of the same polypropylene molecule are atactic and therefore amorphous and not crystalllizable. Examples of these propylene homopolymers containing different levels of isotacticity in different portions of the molecule are described in U.S. Pat. No. 5,594,080, in the article in the Journal American Chemical Society (1995), 117, p. 11586; in the article in the Journal American Chemical Society (1997), 119, p. 3635; in the journal article in the Journal of the American Chemical Society (1991), 113, pp. 8569-8570, and in the journal article in the Journal Macromolecules (1995) 28, pp. 3771-3778. These articles describe the copolymer of the present composition but do not describe the compositions obtained in blends with a more crystalline polymer such as isotactic polypropylene, nor its resultant desirable physical properties.
U.S. Pat. Nos. 3,853,969 and 3,378,606, suggest the formation of in situ blends of isotactic polypropylene and “stereo block” copolymers of propylene and another olefin of 2 to 12 carbon atoms, including ethylene and hexene. The copolymers of this invention are necessarily heterogeneous in intermolecular and intramolecular composition distribution. This is demonstrated by the synthesis procedures of these copolymers which involve sequential injection of monomer mixtures of different compositions to synthesize polymeric portions of analogously different compositions. In addition, FIG. 1 of both patents shows that the “stereo block” character, which is intra or intermolecular compositional differences in the context of the description of the present invention, is essential to the benefit of the tensile and elongation properties of the blend of these patents.
Moreover, all of these compositions either do not meet all of the desired properties for various applications.
Similar results are purportedly achieved in U.S. Pat. No. 3,262,992 wherein the authors suggest that the addition of a stereoblock copolymer of ethylene and propylene to isotactic polypropylene leads to improved mechanical properties of the blend compared to isotactic polypropylene alone. However, these benefits are described only for the stereoblock copolymers of ethylene and propylene. These copolymers were synthesized by changing the monomer concentrations in the reactor with time. This is shown in examples 1 and 2. The stereoblock character of the polymer is graphically shown in the molecular description (column 2, line 65) and contrasted with the undesirable random copolymer (column 2, line 60).
The presence of stereoblock character in these polymers is shown by the high melting point of these polymers and the poor solubility in hydrocarbons at ambient temperature.
Notwithstanding these descriptions of the polymer blends containing isotactic propylene segments it is apparent that useful articles such as elastic films have not been constructed from any of these materials. The utility of elastic films is that they (a) are soft to the touch, (b) can recover from temporary tensile deformation to essentially their original dimensions, this latter property may be of advantage in disposable garments to aid in retaining their shape. In addition, there is a need for elastic films which are easily processible in conventional thermoplastic plastics film equipment using conditions similar to that used for conventional thermoplastic films. Further, any or all of the conventional processes used for film fabrication should be usable to fabricate the elastic film blend. These include but are not limited to the following: compression molding, blown film extrusion and cast film extrusion. It is also further desireable to have elastic films composed essentially completely of polyolefins such that they are thermally stable, heat resistant, light resistant and generally suitable for thermoplastic applications.
SUMMARY
There is a need therefore for elastic films composed generally completely of polyolefins but having simultaneously a crystalline stereospecific polypropylene component to obtain good tensile strength as well as a crystallizable ethylene-propylene copolymer to provide good elastic recoverability, resistance to elastic flow at a load sustained for specified period, as well as a glass transition temperature below that of polypropylene.
Embodiments of our invention include forming elastic films from predominantly crystallizable, semicrystalline polyolefin polymers. Further, embodiments include improving the aforementioned properties of films by blending a generally minor amount of a crystalline polyolefin where the type of crystallinity of the two components are similar, as for instance both will be substantially isotactic or syndiotactic, but the amount of crystallinity differs. Isotactic and syndiotactic arrangement of monomers in a polymer ar

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Elastic films including crystalline polymer and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Elastic films including crystalline polymer and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Elastic films including crystalline polymer and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2979124

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.