Ejection mechanism in a card connector

Electrical connectors – With coupling separator – Nonconducting pusher

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06234813

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to the art of electrical connectors and, particularly, to an ejection mechanism in a card connector, which connector is adapted for receiving a “Compact Flash” card (or CF card) such as used for digital cameras.
BACKGROUND OF THE INVENTION
Known card ejection mechanisms typically comprise a metal shell, an ejection rod and an ejection lever. The metal shell is attached to the connector body and covers at least a part of a Compact Flash (“CF”) card or other type of memory card inserted in the card connector. The metal shell has a guide section at one side thereof, and the ejection rod is slidably attached within the guide section. The ejection lever is rotatable attached to the metal shell, and is operatively connected to the ejection rod such that the ejection lever is rotated when the ejection rod is pushed. The ejection lever has a card-engagement projection formed on one end thereof to contact one side of the card, permitting ejection of the CF card from the card connector by rotation of the ejection lever.
In conventional card ejection mechanisms, the ejection rod is typically fabricated of plastic and is relatively thick in order to endow the rod with a minimum strength. Also, the guide section must allow for clearance of the plastic rod which will generally be fabricated with a relatively wide tolerance range. Accordingly the lateral size of the guide section and ejection rod is relatively large with the result that the width of the card ejection mechanism, and hence the card connector, is increased significantly. In today's trend of down-sizing electronic devices equipped with such card connectors, it is important that these card connectors remain as small as possible. Furthermore, the increased clearance in the guide section to accommodate the plastic ejection rod may actually afford too much clearance in the guide section such that the ejection rod is loose within the guide section. This looseness can cause operating forces to deviate, thus causing an undesired component force to be applied to the metal shell and possibly causing damage or deformation of the shell and certainly increasing the force required to eject a card.
SUMMARY OF THE INVENTION
One object of the present invention is to provide a card ejection mechanism having a guide section having sufficient clearance to allow the ejection rod to pass therethrough smoothly, yet not too much clearance that the rod is loose within the guide section.
To obtain this object, an ejection mechanism is provided in a card connector comprising: a metal shell attached to the connector body, said metal shell having a guide section on one side; an ejection rod slidably attached within the guide section; and an ejection lever rotably attached to the inner surface of the metal shell operatively connected to the ejection rod such that the ejection lever is rotated during sliding of the ejection rod, is improved by: the ejection rod comprises a rectangular metal piece stamped out of a metal sheet; the guide section is composed of an inner wall confronting the inner surface of the ejection rod, outer wall sections confronting the outer surface of the ejection rod, the inner wall and outer wall sections being spaced from each other by the thickness of the ejection rod, and a cantilever-like resilient extension provided on the same side as the outer wall sections to bias the ejection rod against the inner wall.
This construction permits a significant reduction of the lateral size of the card ejection mechanism, and accordingly the lateral size of an electronic device equipped with a card connector having such a card ejection mechanism thereon. The ejection rod is held within the guide section without the looseness found in prior art ejection mechanisms, thus permitting the operating forces to be efficiently transmitted to the ejection rod without deviation.
The rectangular ejection rod includes integral beads longitudinally arranged at intervals on its outer surface which are adapted to abut against the cantilever-like resilient extension of the guide section. The beads substantially increase the strength of the ejection rod without increasing the size of the guide section, and further provides an audible click to a person during actuation of the card ejection mechanism.
The ejection lever has a “U”-shaped joint portion formed on one end thereof to sandwich the ejection rod and the inner wall of the guide section between opposite upright arms of the “U”. This connects the ejection lever to the inner wall of the guide section, thereby reducing the looseness of the ejection rod within the guide section to ensure the efficient transmission of operating forces directly to the ejection lever.
Therefore, the stamped and formed ejection rod is relatively thin and made with precision to permit clearance of the ejection rod within the guide section to be minimized. For these reasons the card ejection mechanism can be significantly reduced in width. Furthermore, the ejection rod is spring-biased inwardly by the cantilever-like resilient extension so that it is pushed against the inner wall of the guide section to eliminate the looseness of the ejection rod within the guide section. The integral connection between the ejection rod and the inner wall of the guide section, which connection eliminates the looseness between the ejection rod within the guide section, is assured by the sandwiching of the ejection rod and the inner wall between the opposite upright arms of the “U”-shaped joint portion of the ejection lever.


REFERENCES:
patent: 5791920 (1998-08-01), Tomioka et al.
patent: 5921792 (1999-07-01), Chen
patent: 5989045 (1999-11-01), Kimura
patent: 6017230 (2000-01-01), Yao

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ejection mechanism in a card connector does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ejection mechanism in a card connector, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ejection mechanism in a card connector will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2569896

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.