Ejecting ink using shape memory alloys

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S055000, C347S048000

Reexamination Certificate

active

06764166

ABSTRACT:

CROSS REFERENCES TO RELATED APPLICATIONS
The following Australian provisional patent applications are hereby incorporated by reference. For the purposes of location and identification, US patents/patent applications identified by their US patent/patent application serial numbers (USSN) are listed alongside the Australian applications from which the U.S. patents/patent applications claim the right of priority.
CROSS-REFERENCED
US PATENT/
AUSTRALIAN
PATENT APPLICATION
PROVISIONAL
(CLAIMING RIGHT OF
PATENT
PRIORITY FROM AUSTRALIAN
DOCKET
APPLICATION NO.
PROVISIONAL APPLICATION
NO.
PO7991
09/113,060
ART01
PO8505
09/113,070
ART02
PO7988
09/113,073
ART03
PO9395
6,322,181
ART04
PO8017
09/112,747
ART06
PO8014
09/112,776
ART07
PO8025
09/112,750
ART08
PO8032
09/112,746
ART09
PO7999
09/112,743
ART10
PO7998
09/112,742
ART11
PO8031
09/112,741
ART12
PO8030
6,196,541
ART13
PO7997
6,195,150
ART15
PO7979
09/113,053
ART16
PO8015
09/112,738
ART17
PO7978
09/113,067
ART18
PO7982
09/113,063
ART19
PO7989
09/113,069
ART20
PO8019
09/112,744
ART21
PO7980
6,356,715
ART22
PO8018
09/112,777
ART24
PO7938
09/113,224
ART25
PO8016
6,366,693
ART26
PO8024
09/112,805
ART27
PO7940
09/113,072
ART28
PO7939
09/112,785
ART29
PO8501
6,137,500
ART30
PO8500
09/112,796
ART31
PO7987
09/113,071
ART32
PO8022
09/112,824
ART33
PO8497
09/113,090
ART34
PO8020
09/112,823
ART38
PO8023
09/113,222
ART39
PO8504
09/112,786
ART42
PO8000
09/113,051
ART43
PO7977
09/112,782
ART44
PO7934
09/113,056
ART45
PO7990
09/113,059
ART46
PO8499
09/113,091
ART47
PO8502
6,381,361
ART48
PO7981
6,317,192
ART50
PO7986
09/113,057
ART51
PO7983
09/113,054
ART52
PO8026
09/112,752
ART53
PO8027
09/112,759
ART54
PO8028
09/112,757
ART56
PO9394
6,357,135
ART57
PO9396
09/113,107
ART58
PO9397
6,271,931
ART59
PO9398
6,353,772
ART60
PO9399
6,106,147
ART61
PO9400
09/112,790
ART62
PO9401
6,304,291
ART63
PO9402
09/112,788
ART64
PO9403
6,305,770
ART65
PO9405
6,289,262
ART66
PP0959
6,315,200
ART68
PP1397
6,217,165
ART69
PP2370
09/112,781
DOT01
PP2371
09/113,052
DOT02
PO8003
6,350,023
Fluid01
PO8005
6,318,849
Fluid02
PO9404
09/113,101
Fluid03
PO8066
6,227,652
IJ01
PO8072
6,213,588
IJ02
PO8040
6,213,589
IJ03
PO8071
6,231,163
IJ04
PO8047
6,247,795
IJ05
PO8035
6,394,581
IJ06
PO8044
6,244,691
IJ07
PO8063
6,257,704
IJ08
PO8057
6,416,168
IJ09
PO8056
6,220,694
IJ10
PO8069
6,257,705
IJ11
PO8049
6,247,794
IJ12
PO8036
6,234,610
IJ13
PO8048
6,247,793
IJ14
PO8070
6,264,306
IJ15
PO8067
6,241,342
IJ16
PO8001
6,247,792
IJ17
PO8038
6,264,307
IJ18
PO8033
6,254,220
IJ19
PO8002
6,234,611
IJ20
PO8068
6,302,528
IJ21
PO8062
6,283,582
IJ22
PO8034
6,239,821
IJ23
PO8039
6,338,547
IJ24
PO8041
6,247,796
IJ25
PO8004
09/113,122
IJ26
PO8037
6,390,603
IJ27
PO8043
6,362,843
IJ28
PO8042
6,293,653
IJ29
PO8064
6,312,107
IJ30
PO9389
6,227,653
IJ31
PO9391
6,234,609
IJ32
PP0888
6,238,040
IJ33
PP0891
6,188,415
IJ34
PP0890
6,227,654
IJ35
PP0873
6,209,898
IJ36
PP0993
6,247,791
IJ37
PP0890
6,336,710
IJ38
PP1398
6,217,153
IJ39
PP2592
6,416,167
IJ40
PP2593
6,243,113
IJ41
PP3991
6,283,581
IJ42
PP3987
6,247,790
IJ43
PP3985
6,260,953
IJ44
PP3983
6,267,469
IJ45
PO7935
6,224,780
IJM01
PO7936
6,235,212
IJM02
PO7937
6,280,643
IJM03
PO8061
6,284,147
IJM04
PO8054
6,214,244
IJM05
PO8065
6,071,750
IJM06
PO8055
6,267,905
IJM07
PO8053
6,251,298
IJM08
PO8078
6,258,285
IJM09
PO7933
6,225,138
IJM10
PO7950
6,241,904
IJM11
PO7949
09/113,129
IJM12
PO8060
09/113,124
IJM13
PO8059
6,231,773
IJM14
PO8073
6,190,931
IJM15
PO8076
6,248,249
IJM16
PO8075
09/113,120
IJM17
PO8079
6,241,906
IJM18
PO8050
09/113,116
IJM19
PO8052
6,241,905
IJM20
PO7948
09/113,117
IJM21
PO7951
6,231,772
IJM22
PO8074
6,274,056
IJM23
PO7941
09/113,110
IJM24
PO8077
6,248,248
IJM25
PO8058
09/113,087
IJM26
PO8051
09/113,074
IJM27
PO8045
6,110,754
IJM28
PO7952
09/113,088
IJM29
PO8046
09/112,771
IJM30
PO9390
6,264,849
IJM31
PO9392
6,254,793
IJM32
PP0889
6,235,211
IJM35
PP0887
09/112,801
IJM36
PP0882
6,264,850
IJM37
PP0874
6,258,284
IJM38
PP1396
09/113,098
IJM39
PP3989
6,228,668
IJM40
PP2591
6,180,427
IJM41
PP3990
6,171,875
IJM42
PP3986
6,267,904
IJM43
PP3984
6,245,247
IJM44
PP3982
09/112,835
IJM45
PP0895
6,231,148
IR01
PP0870
09/113,106
IR02
PP0869
09/113,105
IR04
PP0887
09/113,104
IR05
PP0885
6,238,033
IR06
PP0884
09/112,766
IR10
PP0886
6,238,111
IR12
PP0871
09/113,086
IR13
PP0876
09/113,094
IR14
PP0877
09/112,760
IR16
PP0878
6,196,739
IR17
PP0879
09/112,774
IR18
PP0883
6,270,182
IR19
PP0880
6,152,619
IR20
PP0881
09/113,092
IR21
PO8006
6,087,638
MEMS02
PO8007
09/113,093
MEMS03
PO8008
09/113,062
MEMS04
PO8010
6,041,600
MEMS05
PO8011
09/113,082
MEMS06
PO7947
6,067,797
MEMS07
PO7944
09/113,080
MEMS09
PO7946
6,044,646
MEMS10
PO9393
09/113,065
MEMS11
PP0875
09/113,078
MEMS12
PP0894
09/113,075
MEMS13
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
FIELD OF THE INVENTION
The present invention relates to ink jet printing and in particular discloses a shape memory alloy ink jet printer.
The present invention further relates to the field of drop on demand ink jet printing.
BACKGROUND OF THE INVENTION
Many different types of printing have been invented, a large number of which are presently in use. The known forms of print have a variety of methods for marking the print media with a relevant marking media. Commonly used forms of printing include offset printing, laser printing and copying devices, dot matrix type impact printers, thermal paper printers, film recorders, thermal wax printers, dye sublimation printers and ink jet printers both of the drop on demand and continuous flow type. Each type of printer has its own advantages and problems when considering cost, speed, quality, reliability, simplicity of construction and operation etc.
In recent years, the field of ink jet printing, wherein each individual pixel of ink is derived from one or more ink nozzles has become increasingly popular primarily due to its inexpensive and versatile nature.
Many different techniques on ink jet printing have been invented. For a survey of the field, reference is made to an article by J Moore, “Non-Impact Printing: Introduction and Historical Perspective”, Output Hard Copy Devices, Editors R Dubeck and S Sherr, pages 207-220 (1988).
Ink Jet printers themselves come in many different types. The utilisation of a continuous stream ink in ink jet printing appears to date back to at least 1929 wherein U.S. Pat. No. 1,941,001 by Hansell discloses a simple form of continuous stream electro-static ink jet printing.
U.S. Pat. No. 3,596,275 by Sweet also discloses a process of a continuous ink jet printing including the step wherein the ink jet stream is modulated by a high frequency electro-static field so as to cause drop separation. This technique is still utilized by several manufacturers including Elmjet and Scitex (see also U.S. Pat. No. 3,373,437 by Sweet et al)
Piezoelectric ink jet printers are also one form of commonly utilized ink jet printing device. Piezoelectric systems are disclosed by Kyser et. al. in U.S. Pat. No. 3,946,398 (1970) which utilizes a diaphragm mode of operation, by Zolten in U.S. Pat. No. 3,683,212 (1970) which discloses a squeeze mode of operation of a piezoelectric crystal, Stemme in U.S. Pat. No. 3,747,120 (1972) discloses a bend mode of piezoelectric operation, Howkins in U.S. Pat. No. 4,459,601 discloses a piezoelectric push mode actuation of the ink jet stream and Fischbeck in U.S. Pat. No. 4,584,590 which discloses a shear mode type of piezoelectric transducer element.
Recently, thermal ink jet printing has become an extremely popular form of ink jet printing. The ink jet printing techniques include those disclosed by Endo et al in GB 2007162 (1979) and Vaught et al in U.S. Pat. No. 4,490,728. Both the aforementioned references disclosed ink jet printing techniques rely upon the activation of an electrothermal actuator which results in the creation of a bubble in a constricted space, such as a nozzle, which thereby causes the ejection of ink from an aperture connected to the confined space onto a relevant print media. Printing devices utilizing the electro-thermal actuator are manufactured by manufacturers such as Canon and Hewlett Pa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ejecting ink using shape memory alloys does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ejecting ink using shape memory alloys, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ejecting ink using shape memory alloys will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3231673

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.