Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Virus or component thereof
Reexamination Certificate
2000-09-09
2003-07-01
Housel, James (Department: 1648)
Drug, bio-affecting and body treating compositions
Antigen, epitope, or other immunospecific immunoeffector
Virus or component thereof
C424S205100, C424S199100, C424S199100, C424S820000, C435S320100, C514S694000
Reexamination Certificate
active
06585978
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention pertains to an EIA vaccine, which provides immunity from disease and/or infection with EIAV, which vaccine allows diagnostic differentiation between vaccinated and non-vaccinated, but exposed or diseased mammals. More specifically, this invention pertains to a vaccine comprising an EIAV wherein an accessory gene has been made nonfunctional and wherein said nonfunctional accessory gene still allows the EIAV to replicate in tissue culture.
2. Brief Description of the Prior Art
The equine infectious anemia virus is a member of the lentivirus subfamily of retroviruses and causes persistent infection and chronic disease in horses worldwide. As such, it is closely related to human immunodeficiency virus (HIV), simian immunodeficiency virus (SIV) and feline immunodeficiency virus (FIV). As with HIV and SIV, disease caused by EIAV is spread by blood transmission. With EIAV, the blood transmission most often occurs by biting flies and other insects carrying virus particles from one horse to another. The first cycle of disease (clinical episode or first febrile episode) in an infected horse usually occurs within 42 days after transmission of the virus. This first cycle is usually characterized by the acute stage of EIA and manifested by pyrexia, thrombocytopenia, anorexia, depression and high plasma viremia levels. Anemia is not usually detected at this stage. Resolution of this first febrile episode is normally observed after 1 to 5 days and occurs concomitantly with a dramatic drop in the amount of plasma-associated virus. Following the acute stage, some animals may remain clinically normal, while others go on to experience multiple bouts of illness in which severe anemia may accompany pyrexia, thrombocytopenia, edema, and dramatic weight loss, and death. Nucleotide sequence data has revealed a high mutation rate of this lentivirus genome during persistent infection (Payne et al, Virology, 1987: 161, p. 321-331) incorporated herein by reference. It is generally known that multiple isolates from the field demonstrate similar genomic differences indicating that EIAV, as HIV and FIV, undergoes a continuing mutation process within its various hosts. It is generally thought that neutralizing antibodies aid in the selection of new antigenic virus variants (mutations) during persistent infections. In infections with EIAV, serologically distinct variants emerge possibly through immune selection pressure operating on random viral genome mutations. It is proposed that horses that show no further clinical signs of disease have developed a mature immune response that can contain the virus and its immunologically-recognized mutants.
The disease is significant because horses that demonstrate exposure to EIAV via testing for antibodies in the blood (Coggins Test or similar anti-p26 antibody detecting test) are either required to be destroyed or strictly quarantined. Because of the Coggins Test and its broad use in the world, especially in testing all performance horses that are transferred into and out of the United States, it is critical that, vaccinated equines be able to be differentiated from infected equines.
The genetic organization of EIAV, as with HIV, SIV and FIV contains only three accessory genes (S1, S2 and S3), in addition to the gag, pol and env genes common to all retroviruses. The S1 open reading frame (ORF) encodes the viral Tat protein, a transcription trans activator that acts on the viral long-terminal-repeat (LTR) promoter element to stimulate expression of all viral genes. The S3 ORF encodes a Rev protein, a post-transcriptional activator that acts by interacting with its target RNA sequence, named the Rev-responsive element (RRE), to regulate viral structural gene expression. The S2 gene is located in the pol-env intergenic region immediately following the second exon of Tat and overlapping the amino terminus of the Env protein (see
FIGS. 1
,
2
a
and
2
b
). It encodes a 65-amino-acid protein with a calculated molecular mass of 7.2 kDa, which is in good agreement with the size of an in vitro translation product. S2 appears to be synthesized in the late phase of the viral replication cycle by ribosomal leaky scanning of a tricistronic. mRNA encoding Tat, S2 protein, and Env, respectively. The ORF coding for the S2 protein of EIAV is highly conserved in all published EIAV sequences and contains three potential functional motifs (
FIG. 2
a
): GLFG (putative nucleoporin motif), PXXP (putative SH3 domain binding motif) and RRKQETKK (putative nuclear localization sequence). Antibodies to S2 protein can be found in sera from experimentally and naturally infected horses, indicating that S2 is expressed during EIAV replication in vivo. These observations suggest that S2 is likely to perform an important role in the virus life cycle. A discussion of the function of S2 is found in Li et al (J. Virol., October 1998, p 8344-8348), incorporated herein by reference.
A second interesting gene contained within the lentivirus group codes for dUTPase. This enzyme catalyzes the conversion of dUTP to dUMP and pp
i
. The gene encoding the dUTPase has been mapped within the pol gene for EIAV and FIV. The lentivirus dUTPase gene has been designated DU. Studies with DU deletion mutants (&Dgr;DU) of EIAV and FIV show that this enzyme is not required for replication of the viruses in fetal equine kidney cells or Crandell cells. However, efficient replication of the EIAV or FIV in monocyte/macrophage cells (typical replication host cell) does require DU. The differences indicated have been described in detail in a publication by Lichtenstein et al (J. Virol., May 1995, p 2881-2888), incorporated herein by reference.
Envelope proteins (env) are thought to be required for protection from disease and, perhaps, protection from infection. By protection from disease is meant that a mammal exposed to the virus, does not demonstrate clinical signs (fever, lethargy, anemia, etc.) but does carry particles associated with the viral RNA genome (shortened herein to viral particles) in its blood, said particles being detectable by a reverse transcriptase polymerase chain reaction test (RT-PCR). By protection from infection is meant that a mammal exposed to the virus does not demonstrate clinical signs nor does its blood contain RT-PCR-detectable virus particles as described above. The major envelope proteins of EIAV are gp90 and gp45. These are proposed as the protective antigeins of EIAV. By the term protective antigens is meant antigens from EIAV that produce either protection from disease or protection from infection as indicated above.
It would seem obvious to prepare a vaccine by purifying out the env proteins, especially gp90 and gp45. Indeed, preparation of vaccines comprising gp90 and gp45 has been attempted with essentially no success. Issel et al (J. Virol. June 1992, p 3398-3408) report that a gp90/gp45 vaccine protected ponies from infection caused by homologous EIAV (the subunits were derived from the same EIAV strain as was used for challenge), however, these subunits did not protect ponies from either disease or infection when challenged with a heterologous EIAV strain. In fact, the latter produced enhanced disease signs. The subunit enhancement corroborates findings with SIV and FIV subunit vaccines that appear to enhance disease post challenge. These authors clonclude that perfecting a subunit vaccine for lentiviruses (e.g., HIV, SIV, EIAV and FIV) poses a significant challenge because of the subunit enhancement effect.
Issel, et al (J. Virol., June 1992, pp 3398-3408) report the prevention of infection by a high-dose whole-virus EIA vaccine. However, vaccination of horses with this vaccine produces horses that are Coggins Test positive (anti-p26 antibody positive) and there is no practical method to demonstrate the difference between vaccinated and infected equines. Due to the previously-mentioned eradication program in effect in the U.S., a whole-virus vaccine is not feasible.
Since there has been no effective and safe method f
Brown Karen K.
Hennessy Kristina J.
Issel Charles
Li Feng
Montelaro Ronald
Akzo Nobel
Housel James
Li Baoqun
Ramey III William P.
LandOfFree
EIA vaccine and diagnostic does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with EIA vaccine and diagnostic, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and EIA vaccine and diagnostic will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3095396