EIA test using nondenatured HIV antigen for early detection...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving virus or bacteriophage

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007100, C435S069100, C424S188100, C424S208100

Reexamination Certificate

active

06492104

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the fields of diagnostic and screening tests. More particularly, it concerns improved methods for the detection of early anti-HIV antibody in a sample, as well as early diagnostic tests to detect human immunodeficiency virus exposure or infection in infants. An additional aspect of the invention concerns methods for detecting HIV in idiopathic chronic lymphopenia patients. The invention also relates to the field of recombinant proteins, as particular recombinant proteins and recombinant protein composite preparations of several human immunodeficiency virus strains are disclosed. The invention also relates to the field of commercial diagnostic and prognostic assay plates and kits, as assay plates designed to detect an early anti-HIV antibody that include the described recombinant human immunodeficiency virus antigen or preparations of human immunodeficiency virus infected cell isolates are described.
2. Background of the Invention
Patients infected with human immunodeficiency virus (HIV) are known to eventually mount a humoral immune response to the virus. The production of anti-HIV antibody is one marker used to detect this response. In some studies, anti-HIV antibody has been reported to be more reliable for diagnosis than either HIV culture or HIV antigen detection in patient samples
1,2
. Consequently, anti-HIV antibody detection tests are the most common method of diagnosis of infection. Both EIA and Western blot assays are currently used in the detection of anti-HIV antibody.
Unfortunately, a degree of unreliability continues to exist with the use of conventional anti-HIV antibody screening methods, such as by conventional EIAs. Thus, a further confirmatory test, such as a Western Blot (WB) or fixed-cell immunofluorescence assay, have become recommended additional testing procedures.
Despite these and other additional precautionary testing measures, a number of studies report the existence of a seemingly silent period of HIV infection during which antibody to the virus is not detectable even after exhaustive testing. This period reportedly extends from the point of infection to the time infection is detectable through conventional sero-conversion assays. This silent period has been reported to persist anywhere from a few months to as much as two and one-half years before infection is detectable by conventional EIAs and Western blot assays.
While not always successful, culturing of peripheral blood lymphocytes to amplify HIV does provide for detection of the virus when anti-HIV antibody cannot be detected by conventional EIA or WB. However, several recent studies using PCR-based HIV detection methods continue to report the existence of PCR(+)positive, sero(−)negative cases in high-risk populations
10-17
. Nevertheless, PCR usually does detect infection before conventional sero-conversion methods, with the aforedescribed period of silent infection being reduced by approximately one month, at least in some cases
18
.
The rate of HIV transmission in negatively tested blood, using conventional testing methods, continues to persist at a relatively constant rate
25
. For example, HIV-1 transmission from seemingly “seronegative” blood using EIA conventional methods, continue to be reported
21-23
. Donated organs also constitute a source of HIV disease transmission, with HIV infection being diagnosed in recipients of organs from individuals whom, again, test HIV seronegative by conventional assays
24
.
Retrospective studies have reported that early donor education and self-exclusion measures has reduced the rate of disease transmission
26
. However, such exclusion methods together with antibody testing, while hopefully reducing the probability of at least some false negative results
27
, provides only a partial and imperfect solution to the problem in at least a small subset of reported HIV cases.
Some studies report the presence of HIV specific T-cells in high risk individuals testing negative with conventional EIA, WB, and PCR based detection techniques
28,29
. Other reports have identified the existence of B-cells which produce HIV-specific antibodies in vitro that are present in EIA-negative, WB-negative, high-risk subjects
30
. While these approaches present possible alternatives, for testing, they are relatively complex and difficult procedures, and are thus impractical for large-scale clinical screening. The expense and time associated with this type of testing again leaves a need in the medical arts for a reliable and practical HIV screening and detection approach.
Early HIV infection of infants is a particularly troublesome problem. Current technology renders it difficult to diagnose whether an infant less than 18 months of age is infected, absent development of overt clinical symptoms. Conventional HIV serological tests for anti-HIV antibody are inadequate for detecting infection in an infant because the antibody detected is not necessarily that of the infant, but is that of the HIV-positive mother. This maternally derived antibody typically persists for up to 21 months in the infants system
34
.
Neither IgA or IgM antibody cross the placenta. Hence, studies in children have emphasized the detection of IgA and IgM as indicators of infant HIV infection. In one study, both HIV-specific IgA and IgM were found in infants up to 12 months of age born to sero-positive mothers, with twice as many samples yielding IgA anti-HIV compared to IgM (66% vs. 33%)
35
using conventional screening assays (WB, EIA).
Currently, approximately 50% of infected infants can be identified at birth, approximately 90% by 3 months of age, and almost all by 6 months of age using combination HIV culture, PCR, IgA antibody tests, and p24 antigen tests
38
. However, the fact that HIV can be detected in only one-half of infected infants at the time of birth again points to the continued need for improved early HIV detection in infants.
SUMMARY OF THE INVENTION
The present invention, in a general and overall sense, concerns recombinant HIV envelope proteins and peptides, and early anti-HIV antibody immunoreactive fragments thereof, that are capable of immunologically binding to early anti-HIV antibodies.
As used in the description of the present invention, early anti-HIV antibodies are defined as the first anti-human immunodeficiency virus antibodies that are induced in a human infected with the HIV virus, these antibodies being capable of recognizing conformational epitopes of HIV gp160 antigen and which are not detectable by current EIA or Western Blot assay using HIV gp160 target antigen that has not have retained conformational epitopes.
The invention further provides for an improved HIV detection and screening method by allowing for the identification of early anti-HIV antibody. These early anti-HIV antibodies previously went undetected using conventional assays because the target antigens historically employed in these assays lacked sufficiently preserved conformational epitopes necessary for early antibody recognition.
The compositions and assays of the present invention comprise improved HIV target antigens that include the conformational epitopes of an HIV envelope protein, specifically the HIV gp160. The early anti-HIV antibodies detectable using the described antigen do not recognize primary sequence epitopes, and hence they go undetected with conventional serological tests that employ at least partially denatured HIV target antigen (EIA and Western blot).
Because PCR-based assays provide little improvement over conventional EIA and Western Blot serological-based assays for detecting HIV, it is expected that the presently described EIA's will also provide an improved method over PCR based detection and screening methods.
Recombinant Proteins and Peptides of Human Immunodeficiency Virus
In some embodiments of the invention, a recombinant protein comprising a recombinant human immunodeficiency virus envelope protein capable of immunologically binding an early anti-HIV antibody is prov

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

EIA test using nondenatured HIV antigen for early detection... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with EIA test using nondenatured HIV antigen for early detection..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and EIA test using nondenatured HIV antigen for early detection... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2989905

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.