ECG derived respiratory rhythms for improved diagnosis of...

Surgery – Diagnostic testing – Cardiovascular

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S512000

Reexamination Certificate

active

06415174

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates generally to diagnosis of sleep disordered breathing and in particular to diagnosis of sleep disordered breathing utilizing electrocardiographic measurements. Still more particularly, the present invention relates to derivation of respiratory data from electrocardiographic measurements for determining either the presence of sleep disordered breathing causing or aggravating cardiac symptoms or the absence of sleep disordered breathing influence on cardiac symptoms due to cardiac pathology.
2. Description of the Related Art
Sleep disordered breathing is a significant problem for a large portion of the population. Sleep apnea, an intrinsic dyssomnia involving cessation of breathing during sleep and resulting in complete or partial arousal from sleep, is one of the most prevalent forms of sleep disordered breathing. Symptoms of the disorder include daytime sleepiness, fatigue or tiredness, and irritability, which may seriously impair the performance of the individual.
Sleep apnea is typically defined as the cessation of air exchange (breathing) from the nostrils or mouth lasting at least 10 seconds. Partial or complete arousal from sleep is considered a defensive mechanism most likely stimulated by rising carbon dioxide levels in the blood during the apneic event to reestablish ventilation and prevent death in the sleeping subject. Three established categorized of sleep apnea include: obstructive sleep apnea, obstruction of the upper airway; central sleep apnea, cessation of ventilatory effort; and mixed apnea, a combination of both upper airway obstruction and cessation of ventilatory effort.
Sleep disordered breathing may also take the form of a decrease in ventilation during sleep rather than a complete sleep apnea, which may result in hypercarpnea and sleep disturbance and is classified as hypopnea. Apneic events are usually quantified (or “scored”) as either (1) more than 75% reduction in air flow, with or without change in oxygen saturation in the blood (SpO
2
), or (2) more than 50% reduction in air flow combined with a decrease of blood oxygen saturation by more than 10%. Hypopneic events may be variously quantified as: (1) either a 50% or greater reduction in air flow combined with at least a 4% reduction in blood oxygen saturation or, alternatively, a 20%-50% reduction in airflow in association with at least 2% loss of blood oxygen saturation; (2) a 50% or greater reduction in thoracic and abdominal activity; (3) a change in electromyogram (EMG) measurements accompanied by, rolling eye movements, indicating arousal; and/or (4) a change in electroencephalogram (EEG) measurements combined with a 20% decrease in air flow, independent of decrease in blood oxygen saturation.
While the distinction between apnea and hypopnea is largely one of severity, sleep disordered breathing diagnosis may entail measurement of both types of events. For example, the apnea-hypopnea index (AHI), representing a number of either apneic or hypopneic events per hour for a subject, is more commonly used than the apnea index (AI), representing only the total number of apneic events per hour for the subject. An AHI of more than 5 events per hour, regardless of severity, is usually qualified as sleep apnea. Other variables such as average duration of an event, number of apneic versus hypopneic events, and average decrease in blood oxygen saturation during events are utilized to determine the severity of the disorder.
Polygraphic monitoring, or polysomnography, the measurement of vital body signals during sleep, is the most commonly employed method of diagnosing sleep disorders, including sleep apnea. The data is collected during the patient's normal sleeping time and is later scored (evaluated) visually. Various signals are recorded during the night to identify different sleep stages, respiratory variables, heart function, and muscle tone, all of which aid in scoring sleep disordered breathing events.
A conventional arrangement of the polygraphic monitoring instrumentation employed is depicted in
FIG. 8. A
polygraphic monitoring unit
802
is connected by a plurality of leads
804
to sensors attached to patient
806
. Polygraphic monitoring unit
802
is capable of measuring a variety of body functions: electroencephalogram (EEG) lead
804
a
is employed to measure electrical brain activity; electrooculogram (EOG) lead
804
b
is employed to detect eye movements; airflow lead or leads
804
c
are employed to measure air flow signals from as many as three thermistors placed near the patient's nostrils and mouth; electromyogram (EMG) lead
804
d
is employed to measure muscle tone from the patient's chin area; electrocardiogram (ECG) leads
804
e
are employed to measure the heart function; and chest and abdominal band leads
804
f
and
804
g
are employed to measure thoracic and abdominal movements, respectively. Additionally, a pulse oximeter (not shown) may be employed to record blood oxygen saturation, an electrode may be placed on the tibialis anterior to monitor leg muscle activity, and a video recording of the patient may be taken utilizing infrared low light technology.
Measurements taken from polygraphic monitoring unit
802
are typically filtered and amplified, and recorded on a data acquisition system
808
such as those available from Tele-factor Corporation of West Conshohocken, Pa. The polysomnography signals are also usually digitized by an analog-to-digital converter
810
and transmitted to a data processing system
812
for processing and/or storage. Converter
810
may, for example, be a DAS 1200 series A/D converter board, available from Keithly Instruments, Inc. of Massachusetts, within data processing system
812
.
Conventional polygraphic monitoring instrumentation is often uncomfortable to the patient. The instrumentation also embraces several forms of respiration monitoring. Currently, two broad categories of respiration monitoring may be identified: direct methods, such as nasal thermistors, spirometers, and pneumotachometers, measure air flow in and out of the lungs; indirect methods, which presently include whole body plethysmographs, inductance and impedance plethysmographs, and strain gauge measurement of chest and abdomen circumference, measure effects of respiration on the body. While direct methods are most accurate, they generally interfere with normal respiration. Most indirect methods, on the other hand, either lose their calibration readily or immobilize the patient (e.g., whole body plethysmograph).
Sleep disordered breathing is prevalent in individuals suffering from cardiovascular disease. ECG signals are routinely recorded in studies for patients with cardiac problems, as well as in patients having respiratory disorders, sleep disorders, and patients in intensive care units. ECG signals are therefore readily available for patients having a variety of disorders. Furthermore, millions of patients are screened each year using extended ECG monitoring (at least 24 hours), while generally their respiration is not monitoring due to the added cost and inconvenience of conventional airflow monitoring equipment.
Advances in the field of electrocardiography have rendered analysis and conditioning or ECG signals robust. Measurement of ECG signals does not interfere with normal breathing. Established technology has existed for years for measurement of the ECG in ambulatory patients. Thus, measurement of ECG signals is more comfortable and less intrusive for the patient than polygraphic monitoring. Properly attached ECG leads are less prone to error due to patient movement.
It is well-known that respiration affects ECG signals, principally as a result of chest movement. Much work has been performed to eliminate this effect from ECG signals to enhance detection of arrhythmia. Capture of chest movement induced modulation of ECG signals, however, could provide a means for extracting respiratory rhythms from ECG signals.
Derivation of respiratory rhythms from ECG signals would not req

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

ECG derived respiratory rhythms for improved diagnosis of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with ECG derived respiratory rhythms for improved diagnosis of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and ECG derived respiratory rhythms for improved diagnosis of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2886051

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.