Plastic and nonmetallic article shaping or treating: processes – With severing – removing material from preform mechanically,... – Forming continuous work followed by cutting
Reexamination Certificate
2000-10-10
2004-02-17
Vargot, Mathieu D. (Department: 1732)
Plastic and nonmetallic article shaping or treating: processes
With severing, removing material from preform mechanically,...
Forming continuous work followed by cutting
C029S025350, C053S456000, C264S166000, C264S210100, C264S297600
Reexamination Certificate
active
06692672
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates generally to electronic article surveillance (EAS) systems and more particularly to a novel EAS marker for use in an EAS system and to a method of manufacturing said EAS marker.
The problem of protecting articles of merchandise and the like against theft has been the subject of numerous technical approaches. One such type of approach has been to attach to the article an electronic tag or marker that is adapted to trigger an alarm or the like if the article of merchandise is moved beyond a predetermined location and the electronic marker has not been deactivated or removed from the article of merchandise. In the aforementioned type of approach, a transmitting apparatus and a receiving apparatus are typically situated on opposite sides of a passageway leading to an exit of the premises being protected, the transmitting apparatus and the receiving apparatus together defining an interrogation zone. The transmitting apparatus is typically used to transmit over the interrogation zone an interrogation signal that is recognizable by the EAS marker and that causes the EAS marker, if activated, to emit a response signal. The receiving apparatus is typically used to detect the presence of a response signal from an activated EAS marker located within the interrogation zone. The detection by the receiving apparatus of a response signal indicates that the EAS marker has not been removed or deactivated and that the article bearing the marker may not have been paid for or properly checked out. Typically, the detection of such a response signal by the receiving apparatus triggers an alarm.
Several different types of EAS markers have been disclosed in the literature and are in use. In one type of EAS marker, the functional portion of the marker consists of either an antenna and diode or an antenna and capacitors forming a resonant circuit. When placed in an electromagnetic interrogation zone created by the transmitting apparatus, the antenna-diode marker generates harmonics of the interrogation frequency in a receiving antenna in the receiving apparatus; the resonant circuit marker causes an increase in absorption of the transmitted signal so as to reduce the signal in the receiving apparatus. The detection of the harmonic or signal level change indicates the presence of the marker in the interrogation zone. With this type of system, the marker is not amenable to deactivation and, therefore, must be removed from the article of merchandise at the time of purchase so as not to trigger the alarm when the merchandise is removed from the store.
Another type of EAS marker includes a magnetostrictive element, also referred to in the art as “a resonator.” Typically, the resonator is in the form of a ribbon-shaped length of an amorphous magnetostrictive ferromagnetic material. Said type of EAS marker also typically includes a biasing magnetic element. The resonator is fabricated such that it is mechanically resonant at a predetermined frequency when the biasing element has been magnetized to a certain level and the resonator is brought into an interrogation zone consisting of an AC magnetic field of the predetermined frequency. In use, the biasing element is activated, i.e., magnetized, and the marker is brought into the interrogation zone, thereby causing the resonator to mechanically resonate at the predetermined frequency. This resonant signal radiated by the resonator is then detected by circuitry provided in the receiving apparatus. By demagnetizing the biasing element, the bias is removed from the resonator; accordingly, when subjected to the AC magnetic field, the resonator no longer resonates to produce a detectable magnetic field. The marker can thus be activated and deactivated by magnetizing and demagnetizing the biasing element.
Examples of the aforementioned magnetomechanical type of EAS marker are disclosed in the following U.S. patents, all of which are incorporated herein by reference: U.S. Pat. No. 4,510,489, inventors Anderson, III et al., which issued Apr. 9, 1985; U.S. Pat. No. 4,510,490, inventors Anderson, III et al., which issued Apr. 9, 1985; U.S. Pat. No. 4,622,543, inventors Anderson, III et al., which issued Nov. 11, 1986; U.S. Pat. No. 5,351,033, inventors Liu et al., which issued Sep. 27, 1994; U.S. Pat. No. 5,469,140, inventors Liu et al., which issued Nov. 21, 1995; U.S. Pat. No. 5,495,230, inventor Lian, which issued Feb. 27, 1996; U.S. Pat. No. 5,568,125, inventor Liu, which issued Oct. 22, 1996; and U.S. Pat. No. 5,676,767, inventors Liu et al., which issued Oct. 14, 1997.
U.S. Pat. No. 4,510,489, which is illustrative of the aforementioned magnetomechanical type of EAS marker, discloses an elongated ductile strip of magnetostrictive, ferromagnetic material adapted, when armed, to resonate mechanically at a frequency within the range of an incident magnetic field. Suitable amorphous ferromagnetic metals, or metallic glasses, are disclosed for example in U.S. Pat. No. 4,553,136. Exemplary materials include the METGLAS alloys. Said strip is disposed adjacent to a ferromagnetic element, such as a biasing magnet capable of applying a dc field to the strip. The biasing magnet has a configuration and disposition adapted to provide the strip with a single pair of magnetic poles, each of the poles being at opposite extremes of the long dimension of the strip. The composite assembly is placed within the hollow recess of a rigid container composed of polymeric material such as polyethylene or the like, to protect the assembly against mechanical damping. The biasing magnet is typically a flat strip of high coercivity material such as SAE 1095 steel, Vicalloy, Remalloy or Arnokrome. Said biasing magnet is held in the assembly in a parallel, adjacent plane, such that the high coercivity material does not cause mechanical interference with the vibration of the strip. Generally, said biasing magnet acts as one surface of the package. Alternatively, two pieces of high magnetic coercivity material may be placed at either end of the strip, with their magnetic poles so arranged as to induce a single pole-pair therein. Alternatively, the bias field can be supplied by an external field coil pair disposed remotely from the marker in the exit passageway.
A magnetomechanical EAS marker that is integrated with an article of merchandise is disclosed in U.S. Pat. No. 5,499,015, inventors Winkler et al., which issued Mar. 12, 1996, and which is incorporated herein by reference. According to the aforementioned patent, the article of merchandise is provided with a structural member having an integrally formed cavity. A magnetostrictive element is housed within the cavity, the cavity being sized and shaped to house the magnetostrictive element without constraining the mechanical resonance of the magnetostrictive element. The cavity is closed by a sealing member affixed on the outer surface of the wall in a position such that the sealing member overlies the opening of the cavity. A biasing element is mounted on the outer surface of the sealing member, the biasing element being magnetically biased to cause the magnetostrictive element to be mechanically resonant when exposed to an alternating electromagnetic field generated at a selected frequency by the EAS system. According to an alternative embodiment, the biasing element may be formed as a layer of magnetic ink printed on the outer surface of the sealing member.
A self-biasing magnetostrictive element for a magnetomechanical EAS system is disclosed in U.S. Pat. No. 5,565,849, inventors Ho et al., which issued Oct. 15, 1996, and which is incorporated herein by reference. According to the aforementioned patent, the self-biasing magnetostrictive element is formed by first annealing a ribbon of ferromagnetic material in the presence of a magnetic field applied in a transverse direction relative to the longitudinal axis of the ribbon, and then annealing the ribbon a second time in the presence of a magnetic field applied in the direction of the longitudinal axis. The twice-annealed ribbon exhibi
Deschenes Charles L.
Herrmann Charles K.
Avery Dennison Corporation
Kriegsman & Kriegsman
Vargot Mathieu D.
LandOfFree
EAS marker and method of manufacturing same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with EAS marker and method of manufacturing same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and EAS marker and method of manufacturing same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3343481