Dynamo electric machine and method of manufacturing the same

Electrical generator or motor structure – Dynamoelectric – Rotary

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C310S179000, C310S216006, C310S254100, C310S260000

Reexamination Certificate

active

06791227

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a dynamo electric machine and a method of manufacturing the same, and, in particular, relates to a dynamo electric machine which is suitable for size reduction and a method of manufacturing the same.
2. Conventional Art
As, for example, disclosed in JP-A-10-66314 (1998), JP-A-8-298756 (1996) and JP(PCT)-A-10-507057 (1998), a stator winding of a conventional dynamo electric machine is constituted in such a manner that a plurality of unit windings are manufactured in advance by molding a winding conductor wound in a plurality of times in a predetermined shape (for example, a hexagonal shape) and are disposed into a plurality of slots in a stator core so that each of the unit windings crosses over the plurality of slots. Further, as disclosed in JP-A-6-209535 (1994), each of a plurality of unit windings which constitutes the stator winding is constituted by two parts one as an in-slot coil and the other as an inter slot crossover coil.
The above referred to crossing over amount of the unit winding is determined based on the number of poles of the stator, therefore, the length of the end section of the unit winding is determined by the magnitude of the crossing over amount. When the number of poles of the stator is large, the amount of crossing over of the unit winding generally decreases, therefore, the length of the end section of the unit winding is shortened in comparison with a stator having a small number of poles. Further, the length of the end section of the unit winding can be shortened by a certain degree by improving the shape of a portion corresponding to the end section of the unit winding of a winding frame used when winding the winding conductor.
However, when the length of the end section of the unit winding is greatly shortened, the disposing work of the winding conductor into slots of the stator core is disturbed. Therefore, the following measure is conceived, in that at the time of disposing the unit winding while limiting the length shortening of the end section of the unit winding so as not to disturb the disposing work, the unit windings are disposed into the slots of the stator core, and after completing the disposing of all of the unit windings the respective sections of the unit windings are forcedly shaped to shorten the same.
However, such manufacturing method requires a large mechanical force to shape the end sections of the unit windings, further, when shaping the end sections of the unit windings, such as an insulating member inserted in the slots of the stator core and an enamel insulative coating applied over the surface of the winding conductor may be damaged, which likely causes a lowering of the break down voltage of the stator and a decrease in the performance of the dynamo electric machine concerned. Still further, the amount of the forced shortening of the end sections of the unit winding is limited, therefore, it is impossible to expect a significant shortening of the end section of the unit winding with such measure.
With regard to the above problem, in the former prior art referred to above, it is impossible to shorten the length of the end section of the unit winding while preventing disturbance at the time of the disposing work of the winding conductor, because the unit windings are shaped in advance. Further, the latter prior art referred to above takes no account of the significant shortening of the length of the end sections by shaping the end sections of the unit windings.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a size reduced dynamo electric machine by shortening the end section of the stator winding.
Another object of the present invention is to provide a method of manufacturing a dynamo electric machines which can shorten the end section of the stator winding.
Still another object of the present invention is to provide a dynamo electric machine of which an insulating property can be enhanced and a method of manufacturing the same.
A further object of the present invention is to provide a dynamo electric machine of which the cooling efficiency at the end section of the stator winding can be enhanced and a method of manufacturing the same.
One of the features of the present invention is that each of a plurality of unit windings constituting the stator winding is formed by dividing it into at least two winding sections. More specifically, each of a plurality of unit windings constituting the stator winding is formed by dividing into a first winding section of which one of end sections is opened, opposing side sections are shaped so as to form a step in the radial direction of the stator core, the open ends of the opened end section face each other in the radial direction of the stator core and the opened end section is bent in a crossing over direction of the unit winding, and a second winding section connecting the open ends of the first winding section.
Herein, the end sections of the unit winding imply portions in the unit winding which project from both end portions in the axial direction of the stator core to the outside in the axial direction of the stator core and are called sometimes as a coil end portion. The side sections of the unit winding imply portions in the unit winding which are disposed in the slots of the stator core and are called sometimes as a coil side portion.
In the present invention, the stator winding is constituted by disposing a plurality of unit windings in a plurality of slots in the stator core in such a manner that one of the two side sections of a unit winding is disposed in a slot other than a slot where the other side section of the unit winding is disposed while crossing over a plurality of slots. Namely, the stator winding is constituted by a so called distributed winding. In such instance, in the present invention, the stator winding is constituted by repeating the following process by the number of the unit windings.
The first winding section is formed in advance in such a manner that a plurality of winding conductors laminated in a straight shape are twisted at the midway area thereof so that the width between the two side sections thereof crosses over a plurality of slots, a step is formed between the two side sections in the radial direction of the stator core and straight shaped open ends are formed at one of two end sections. Subsequently, the two open ends of the first winding section are inserted into two slots from one side of both ends in the axial direction of the stator core. Then, the straight shaped open ends of the first winding section which is projected from the other side of both ends in the axial direction of the stator core are bent in the crossing over direction of the unit winding so that the open ends face each other in the radial direction of the stator core. Finally, the open ends of the opened end section of the first winding section are connected by a winding conductor piece constituting the second winding section.
When connecting the opened end section of the first winding section by a winding conductor piece constituting the second winding section, in order to form a winding conductor having a plurality of turns among at least two winding conductors constituting the first winding section one of the open ends of one winding conductor and the other open end of the other winding conductor are connected by fastening therebetween the winding conductor pieces constituting the second winding section and the same operation is performed depending on the number of winding conductors in the unit winding. The unit winding is constituted by forming from a lamination of a plurality of flat shaped winding conductors.
As a result, in each of the slots of the stator core, a plurality of unit windings are disposed in such a manner that unit windings having different crossing over directions are piled in a slot in its depth direction, the laminating direction of the winding conductors constituting a unit winding is in the latitudinal direction of the slot and a plura

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dynamo electric machine and method of manufacturing the same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dynamo electric machine and method of manufacturing the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dynamo electric machine and method of manufacturing the same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3254114

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.