Dynamically deployed device shield

Land vehicles – Wheeled – Attachment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C280S730200

Reexamination Certificate

active

06517110

ABSTRACT:

BACKGROUND
1. Field of the Invention
The present invention relates to the deployment of automobile air bags and other dynamically deployed devices (“DDDs”), and more particularly, to a dynamically deployed device shield (the “DDDS”) that increases the protective impact surface of an automobile air bag or other DDD while covering, protecting, and guiding the deployment of the automobile air bag or DDD.
2. Background of the Invention
Dynamically deployed devices, such as automobile air bags, are widely used to protect vehicle occupants during rapid vehicle deceleration, such as the deceleration encountered in a collision. The DDDs used in vehicles are placed throughout the vehicle in strategic locations where occupants can be expected to impact hard components of the vehicle. Generally, DDDs are placed above and below the dashboard on both the driver and passenger side, and are placed along the sides of the vehicle at both head and hip levels. The lower DDDs protect the legs and hips of the occupant, while the upper DDDs cushion the head and upper torso.
During a collision, impact forces deform the vehicle structure and push potentially harmful structural parts into the passenger compartment. During such deformation, parts of the vehicle structure can be severely bent or broken, threatening the safety of the occupant with sharp edges and hard surfaces. The DDD cushions the occupant against the impact and shields the occupant from the sharp edges and hard surfaces. However, the DDD itself is subject to damage from the deformed or broken structural components. Moreover, if the DDD is damaged during deployment by structural components, the DDD will not inflate properly, will not reach the desired fully deployed location, and will not prevent the occupant from striking the structural parts of the vehicle, such as the vehicle dashboard, windshield, doors, side windows, and roof. Thus, to ensure adequate performance of the DDD, the DDD must be shielded from the damaging structural components.
Aside from protecting the DDD and the occupant from harmful vehicle components, another aspect critical to occupant safety is the ability of the DDD to reach and remain in a position between the vehicle structure and the expected location of the occupant during the collision. Conventional DDDs tend to oscillate before settling into the designed deployment location. This oscillation is especially troublesome with tubular structures that are attached at only two ends when deployed, such as the typical design used for side impact protection. Because the DDD is anchored at its longitudinal ends, when the DDD deploys from the storage compartment, inflates, and moves toward a position centered between the anchor points, the DDD tends to overshoot its final deployment location and oscillate back and forth past its final deployment location.
The prior art does not overcome these problems. For example, U.S. Pat. No. 5,429,385 discloses a dashboard-mounted air bag device that uses either a protective cloth or restraint guide to keep the air bag from contacting and damaging the edge of the upper opening of the DDD storage compartment. The protective cloth and restraint guide keep the upper opening from interfering with the deployment of the air bag. However, because neither the protective cloth nor the restraint guide fully envelops the air bag, the device does not fully protect the air bag and does not limit the oscillation of the deploying air bag.
U.S. Pat. No. 5,385,366 discloses an air bag deflection shield for use in a panel-mounted air bag module. The shield is separate from the air bag cover door and is designed to direct the inflating air bag rearwardly and downwardly toward a vehicle occupant and to shield the cover door from contact by the inflating air bag. However, despite the shield, the air bag is still subject to damage from vehicle components and is not restrained against oscillation.
U.S. Pat. No. 5,149,130 discloses a protective, high temperature resistant fabric applied to the air bag to prevent damage to the portion of the inflatable cushion closest to the gas generator. Although the protective fabric prevents heat damage around the gas generator, the fabric does not protect against physical damage from harmful vehicle components in other areas of the air bag. Further, the protective fabric does not restrain the air bag to prevent oscillation.
U.S. Pat. No. 5,160,164 discloses a deflection device for an air bag assembly, which controls the inflation pattern of the air bag so that the air bag does not undesirably contact an occupant's head before it contacts the occupant's torso. The device controls the general deployment direction of the air bag but does not restrain the air bag at full deployment and, therefore, does not prevent oscillation. Further, the device does not protect the air bag itself against damaging contact with vehicle components.
SUMMARY OF THE INVENTION
The present invention is a protective assembly that enhances vehicle occupant protection by increasing the protective impact surface of a dynamically deployed device, such as an automobile inflatable tubular structure. The protective assembly, or dynamically deployed device shield, also provides an attractive housing for the DDD that transforms upon deployment into a shield that protects the DDD against damage by vehicle components, facilitates deployment of the DDD through vehicle trim and interior components, and limits the oscillation and overshoot of the DDD to optimize the protection of the vehicle occupant.
In a preferred embodiment of the present invention, the DDDS shields an inflatable tubular structure, e.g., the side-impact head strike protection structure described in U.S. Pat. No. 5,322,322, which is hereby incorporated by reference in its entirety. Other applications of the present invention include other styles of side-impact head strike and rollover counter measures, front air bags, torso side-impact airbags, and other dynamically deployed devices.
The DDDS comprises a loop shield, a cover, and a means for attaching the DDDS assembly to the vehicle structure. The loop shield is made of a protective material and is positioned to optimize its protective benefits to vehicle occupants without compromising its ability to wrap, restrain, and protect the DDD during deployment, particularly in areas where contact with damaging vehicle interior components is anticipated. The loop shield is attached to the vehicle structure by such means as stitching or mounting hardware. The loop shield has an interior volume that is larger than the volume of the inflated DDD, to hold the inflated DDD within a deployment location most favorable to the vehicle occupant. Thus, when the DDD is in its undeployed state, excess loop material must be gathered and secured.
The excess loop shield material is folded in an accordion fold, or other appropriate fashion, and placed against the DDD. The DDD and the folded loop shield are wrapped in an integral soft cover that is attached to the vehicle structure. The cover incorporates a perforated or stitched tear section that breaks away upon deployment of the DDD to allow both the loop shield and the DDD to expand.
The integral soft cover can be made of a separate piece of material or from the same material as the loop shield. To use the same continuous material of the loop shield, the integral cover is formed by folding back the loop shield material after the point at which it is stitched together and wrapping the loop shield and DDD again with the same loop shield material, but without accordion folds. In this configuration, because the integral cover is continuous to cover the entire length of the DDD and is formed from the same material as the loop shield, the loop shield must also be continuous, i.e., the loop shield is a continuous sleeve.
The loop shield is made of a thin, flexible material strong enough to withstand deployment and occupant contact forces. The preferred material for the loop shield is a woven fabric, such as nylon or polyester. Alternately, other thin, flex

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dynamically deployed device shield does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dynamically deployed device shield, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dynamically deployed device shield will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3169085

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.