Multiplex communications – Network configuration determination – Using a particular learning algorithm or technique
Reexamination Certificate
1998-06-29
2003-05-13
Vincent, David (Department: 2661)
Multiplex communications
Network configuration determination
Using a particular learning algorithm or technique
C370S395430, C370S389000, C709S238000, C709S242000
Reexamination Certificate
active
06563798
ABSTRACT:
FIELD OF THE INVENTION
The present invention is related to the creation of structures used for computer network routing tables and, in particular, for PNNI routing tables used in ATM networks.
BACKGROUND
Asynchronous Transfer Mode (ATM) is a connection oriented system. As such, connection requests need to be routed from a requesting node though the ATM network to a destination node. The ATM Forum has defined a private network-to-network or node-to-node interface (PNNI) protocol which allows easier interconnection of ATM switches. The PNNI protocol consists of two components. The first is a signaling protocol used to relay ATM connection requests within a network between a source and a destination. The second is a routing protocol used to determine the path for routing signaling requests though the ATM network. The goal of the PNNI protocol is to advertise enough information between the nodes of a network so as to allow the nodes to route call requests within the network. Ideally, every ATM switch in a network would not only know the address of every ATM attached installation but also the current available composite (VPI/VCI) for new switched virtual circuits (SVCs) to every switch. However, as ATM networks grow to include hundreds or even thousands of switches supporting tens of thousands of users and devices, such an implementation becomes unfeasible.
Nevertheless, finding the shortest or best available path from one point to another across an ATM network does require that each node know something about what the network looks like. For example, each node must know its own whereabouts in the network and be able to locate other nodes or ATM installations so that it can establish virtual circuits offering the appropriate speed and quality of service (QoS) parameters. The solution devised by the ATM Forum is a scheme that distributes and summarizes network topologies so that nodes have detailed information about their local topology and summarized information about more distant regions of the network. The PNNI protocol manages this information through the use of an hierarchical topology, along with an addressing scheme similar to that used in telephony networks.
For each node (e.g., switch) of an ATM network, a PNNI interface associates a connection between two nodes and the connection may be a physical link or a virtual path connection (VPC). In general, every PNNI-capable node has several such interfaces and each is associated with a set of parameter (usually stored in a data structure in memory), including a traffic metrics table that stores the available traffic resource parameters on the link associated with the interface (in the forward direction). These traffic metrics tables are generally two-dimensional and associate service classes with the type of traffic metrics or attributes supported by the connection. In one sense, PNNI is a link state algorithm and QoS-based routing protocol which can collect and advertise these link state parameters (i.e., the attributes and metrics that are associated with each link and node) which become the bases for routing path selections within the network.
Using PNNI, then network nodes are provided with “reachability information” (i.e., based on the traffic metrics and attributes) about other nodes. This reachability information is used by a source node to construct a designated transit list (DTL) that describes a complete route to a destination node. The DTL is inserted into a signaling request which is then transmitted along the path described by the DTL. Thus, using PNNI, a single connection will be set up between the source node and the destination node.
ATM nodes configured to use the PNNI routing protocol advertise the reachability of a particular ATM address over multiple ATM physical links. The various levels of the switching hierarchy established by PNNI, map different segments of the overall ATM network in different degrees of detail. By breaking a large network of ATM switches into smaller domains called peer groups, PNNI allows individual switches to navigate paths through the entire network without requiring them to store an entire map of the network in memory. PNNI organizes nodes into peer groups and nodes within a peer group elect a leader node called a peer group leader. The peer group leader summarizes information about the peer group and presents that information to the next higher level hierarchy and also instantiates a logical group node (LGN) at the next higher level. The LGN represents its own child peer group at the lower level and becomes the peer of other LGNs at its level.
Using PNNI then, nodes in an ATM network automatically form a hierarchy of peer groups according to addresses assigned by a network manager. The nodes' ATM addresses provide the key to the structure of this hierarchy. Each peer group has its own identifier (called a peer group ID), similar to a telephone exchange or area code. For a lower level peer group this ID is similar to an area code and exchange. For a higher peer group, it would be similar to just the area code. Finally, each node within a peer group has a unique address, similar to the way each line in a telephone exchange has a unique number.
Once the PNNI hierarchy is created, peer group leaders are allocated, and routing information is exchanged. Thereafter, the ATM nodes can begin to establish SVCs between various end-stations on the network. Using the PNNI protocol, installations on remote networks can easily establish SVCs across the hierarchy with other end stations and different peer groups.
When a signaling request is received across a user-to-network interface (UNI) by a ingress node, the node will use a shortest path algorithm, such as a Dijkstra calculation, to determine a path to connect the call to the desired destination. This calculation will create a set of DTLs, and each node will have: a full, detailed path within the source node's own peer group; a less detailed path within the parent peer groups; and even less detail on higher level peer groups, terminating in the lowest level peer group which is an ancestor of both the source and the destination nodes. Hence, using PNNI, SVCs can be set up across a network. Once the connection is established, ATM cells are forwarded by simple table lookups, e.g., using connection tables.
As indicated above, the PNNI specification requires that QoS sensitive source routing algorithms be used in the PNNI hierarchical routing environment. QoS sensitive routing implies that the route selection algorithm must determine whether a source route can support all of the QoS requirements of a request. This requires that the touting algorithm consider both link constraints and path constraints. Link constraints such as available bandwidth (AvCR) are relatively easy to deal with because links which do not meet a caller's requirements may simply be dropped or pruned from the topology during the shortest path calculation. However, path constraints such as cell transfer delay (CTD) and cell delay variation (CDV) are more difficult to deal with because they are not dependent on a single link only and, to date, no known routing algorithm is capable of optimizing for multiple path constraints.
Of the known routing algorithms (or shortest path algorithms), on-demand routing has gained some popularity. Indeed, one method of on-demand routing is presented as an appendix to the ATM Forum's PNNI specification. In general, on-demand routing performs a separate route computation for each requested route. On-demand routing according to this method optimizes on a single path constraint while pruning links that do not meet the caller's requirements.
Another routing scheme proposed in the PNNI specification uses pre-computed routes. In this case, sets of paths for each QoS (e.g., constant bit rate (CBR), real-time variable bit rate (rtVBR), non-real-time variable bit rate (nrtVBR), available bit rate (ABR) and unspecified bit rate (UBR)) are pre-calculated by computing the shortest path routes using a single optimization criteria for
Blakely , Sokoloff, Taylor & Zafman LLP
Cisco Technology Inc.
Vincent David
LandOfFree
Dynamically created service class-based routing tables does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Dynamically created service class-based routing tables, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dynamically created service class-based routing tables will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3001074