Dynamic technique for using corrective braking/accelerating...

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Indication or control of braking – acceleration – or deceleration

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S110000, C123S361000, C123S399000

Reexamination Certificate

active

06574542

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to methodology for utilizing continual sensor-based data to design and adjust corrective braking/accelerating actions on vehicles experiencing out-of-control-conditions, in a given dynamic environment, due to bumpy rides.
2. Introduction to the Invention
Current techniques to control bumpy rides rely on driver's skill and are not very effective. Automatic corrective braking/accelerating action techniques do not exist. Only static mechanical/hydraulic brakes are in effect today. We note, here, that no attention is given to the dynamic workings of the vehicle in the changing real environment. Specifically, the stresses and accelerations experienced by the vehicle during normal operation are not taken into account, nor is an optimum balance, between safety and comfort, taken into account.
SUMMARY OF THE INVENTION
We have now discovered novel methodology for exploiting advantages inherent generally in sensing the dynamic workings (forces) on specific vehicles in actual motion, and using this sensor-based data to improve or optimize the construction and operation of corrective braking/accelerating actions tools.
Our work proceeds in the following way.
We have recognized that a typical and important paradigm for presently controlling bumpy rides, is a largely static and subjective human paradigm, and therefore exposed to all the vagaries and deficiencies otherwise attendant on static and human procedures. In sharp contrast, the novel paradigm we have in mind works in the following way.
First, a vehicle is equipped with a set of force and accelerations sensors mounted, say, inside a vehicle-encasing device (harness). These sensors record their associated forces and accelerations produced in normal vehicular motion in its dynamic environment for a prescribed period of time, preferably sufficient to capture all possible force and acceleration patterns.
The dynamically acquired data are fed into a computer which creates a map of the forces and accelerations experienced by the examined vehicle. This information may be used to design a preferably optimal set of corrective braking/accelerating actions which preferably maximizes support and minimizes discomfort, and result in a computer-based construction of said set of actions that offers preferably optimal performance to the examined vehicle in its normal operation. This physical sequence of corrective actions preferably provides maximum safety, support and maximal comfort to its driver and passengers, following the optimal design of the corrective braking/accelerating actions.
Accordingly, we now disclose a novel computer method which can preserve the advantages inherent in the static approach, while minimizing the incompleteness and attendant static nature and subjectivities that otherwise inure in techniques heretofore used.
To this end, in a first aspect of the present invention, we disclose a novel computer method comprising the steps of:
i) mounting pressure and acceleration sensors in a vehicle-enclosing device;
ii) transmitting data produced by said sensors during actual operation of said body-enclosing device attached to a specific vehicle; and
iii) creating a force-and-acceleration map based on said sensor-based data.
Preferably, the method includes a step for designing a model for a set of corrective braking/accelerating actions providing thereby optimal safety, support, and comfort based on the force-and-acceleration map; and, preferably includes a further step of constructing a physical sequence of actions based on a design provided by the model.


REFERENCES:
patent: 5477825 (1995-12-01), Hattori et al.
patent: 5532929 (1996-07-01), Hattori et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dynamic technique for using corrective braking/accelerating... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dynamic technique for using corrective braking/accelerating..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dynamic technique for using corrective braking/accelerating... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3153073

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.