Dynamic reduction of track shape errors in disc drives

Dynamic magnetic information storage or retrieval – Automatic control of a recorder mechanism – Controlling the head

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C360S077110, C360S077020

Reexamination Certificate

active

06608731

ABSTRACT:

FIELD OF THE INVENTION
This application relates generally to disc drive data storage devices and more particularly to an apparatus and method of writing servo track information thereon.
BACKGROUND OF THE INVENTION
Disc drives are the most common means of storing electronic information used today. Typical disc drives have one or more magnetic media discs attached to a spindle; the spindle and discs are rotated at a constant velocity by a spindle motor. An actuator assembly, attached to a bearing shaft assembly next to the discs, radially traverses over the surface of the discs. The actuator assembly has a plurality of actuator arms, each with one or more flexures extending from the end of each actuator arm. A read/write head is attached to the distal end of each flexure. The actuator assembly is rotated about the bearing shaft assembly by a servo positioner. The servo positioner receives signals from a controller, rotates the actuator assembly, and positions the read/write head relative to the disc surface.
Information is transferred to and from the discs by the read/write heads attached to the flexures at the end of the actuator arms. Each head includes an air bearing slider that enables the head to fly on a cushion of air in close proximity to the corresponding surface of the associated disc. Most heads have a write element and a read element. The write element is used to store information to the disc, whereas the read element is used to retrieve information from the disc.
Discs, to facilitate information storage and retrieval, are radially divided into concentric circles known as “servo tracks” or “tracks”. Tracks are given a track number, among other identifying information, so that the servo positioner can align the read/write head over desired track. Information is stored or retrieved from the disc after the read/write head is in the correct position. The process of switching between different tracks is called “seeking”, whereas remaining over a single track while information is stored or retrieved is called “following”.
Each track is linearly subdivided into pie-shaped sections, called “segments” or “sectors”. The two most common types of sectors are informational data sectors and servo data sectors. In a typical disc drive, the informational data sectors usually contain information generated or stored by the user such as programs files, application files, or database files. There may be ten to a hundred, or even more, informational data sectors dispersed around a single track.
The servo sectors, on the other hand, contain information that is used by the servo positioner to determine the radial, and linear, position of the head relative to the disc surface and relative to the track center. Servo sectors typically consist of a Grey code field, which provides coarse position information to the servo positioner such as the track and cylinder number, and a servo burst field, which provides fine position information to the servo positioner such as the relative position of the head to the track center. Generally speaking, the burst field creates a positive voltage on one side of the track centerline and a negative voltage on the other side of the track centerline. The read head can be aligned directly over a track centerline by positioning the read head such that the sum of the burst field voltages equal zero.
Servo sectors are usually placed between adjacent informational data sectors on the same track. A clock signal mechanism is used to insure that data intended to be stored in a servo sector does not overwrite data in an information sector (and vice versa).
During the servo writing process, a timing pulse from the clock signal mechanism notifies the servo positioner when the head is over a servo sector (as opposed to over an information sector). The write enable;signal is turned on and information is written to the servo sector. The timing pulse also notifies the servo positioner when the head is over an information sector. The write enable signal is turned off and servo information is not stored in the informational data sector during the servo writing process.
In contrast during, normal disc drive operation, the timing pulse notifies the servo positioner when the head is over an information sector (as opposed to a servo sector). The write enable signal is turned on, and data is written to the information sector. The timing pulse also notifies the servo positioner when the head is over a servo sector. The write enable signal is turned off and user data is not stored in the servo sector during normal disc drive operation.
The number of tracks located within a specific area of the disc is called the “track density”. The greater the number of tracks per area, the greater the track density. The track density may vary as the disc is radially traversed. Disc manufacturers attempt to increase track density in order to place more information on a constant size disc. Track density may be increased by either decreasing the track width or by decreasing the spacing between adjacent tracks.
An increase in track density necessitates increased positioning accuracy of the read/write elements in order to prevent data from being read from or written to the wrong track. Manufacturers attempt to fly the read/write head elements directly over the center of the desired track when the read/write operation occurs to insure that the information is being read from and written to the correct track. Hitting the track center target at high track densities requires that the tracks be as close to perfectly circular as possible when written to the disc surface.
Tracks are usually written on the disc during disc drive manufacturing using one of two means: 1) a servowriting machine, or 2) self-propagated servo writing. In both methods, a timing clock is used to determine when the head is over an area where a servo sector is to be written. A write enable signal is activated and servo information is written when the timing pulse indicates that the head is located over a servo sector. The write enable signal is de-activated and information is not written once the head exits the area where a servo sector is to be written.
A servowriting machine is a large piece of external equipment that writes servo tracks on a disc drive. The servowriting machine uses a very accurate lead screw and laser displacement measurement feedback device to precisely align a write element. The write element, which is attached to an external head/arm positioner, is aligned relative to where the desired track is to be written on the disc surface. A track is written on the disc once the write element is correctly aligned. The head/arm positioner then moves the write element a predetermined distance to the next desired track location. The head/arm positioner, therefore, controls both the track placement and track-to-track spacing.
A servowriter has several drawbacks. First, a typical disc may contain more than 60,000 servo tracks. The process of aligning and writing each track on the disc is very time consuming and expensive. Second, although very accurate at lower track densities, the servowriter cannot meet the accuracy requirements dictated by higher track densities. Finally, the servo writer must be used in a clean room because the disc components are exposed during servo writing; again adding to the expense of the servo writing process.
The second means of writing tracks on a disc is called self-propagating servo writing. Oliver et al first described this method of servo track writing in U.S. Pat. No. 4,414,589. Several other patents have disclosed slight variations in the Oliver patent, but the same basic approach is used. Under the basic method, the drive's actuator assembly is positioned at one of its travel-range-limit stops. A first reference track is written with the write head element. The first reference track is then read with the read element as the head is radially displaced from the first reference track. When a distance is reached such that the read element senses a predetermined percentage of the first reference

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dynamic reduction of track shape errors in disc drives does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dynamic reduction of track shape errors in disc drives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dynamic reduction of track shape errors in disc drives will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3129012

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.