Dynamic interference optimization method for satellites...

Interactive video distribution systems – Cellular video distribution system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C725S067000, C725S063000, C455S013400, C455S522000

Reexamination Certificate

active

06272679

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to satellite broadcast methods, and more particularly to multi-beam satellite transmission in which different beams use the same co-polarized frequency spectrum and can interfere with each other.
2. Description of the Related Art
A satellite broadcast system has been developed that is particularly useful for direct television broadcast to relatively small local service areas, as well as to larger regional areas. The system, described in co-pending U.S. patent application Ser. No. 09/160,681 filed on the same day as this application and entitled “Non-uniform Multi-beam Satellite Communications System and Method”, employs a series of relatively small “spot” beams to provide local service to higher population markets. A frequency re-use scheme is used in which at least some of the separate beams are broadcast re-using the same frequency spectrum in a non-uniform beam pattern. The target areas for beams which use the same frequencies must not overlap, thereby avoiding excessive interference. Priories are established among different target areas by assigning different sizes and powers to their respective transmission beams, with the higher power beams accommodating a larger number of station signals and also resulting in a lower interference level from other beams. The priorities among different target areas can also be set by the selection of antenna reflector sizes to produce different roll-off characteristics for different beams, and by varying the illumination tapers of different antenna feedhorns to establish different peak-to-edge power differentials for different beams.
To optimize the system's frequency re-use efficiency, some amount of interference is permitted between nearby beams using overlapping or equal frequency bands. For satellite signal transmissions that,are performed digitally, cross-beam interference and thermal noise are generally not perceived as a constant degradation in the signal quality when the system is operating according to design. Rather, higher noise and interference levels can increase the duration and frequency of total signal outages during rain, thunderstorms or other bad weather conditions. The problem for a properly operating system is not one of signal quality, which is always high for a digital system when the signal is received, but of the number and duration of outages. In the past this has been addressed by spacing beams with different signals in the same frequency band so far apart that there is essentially no overlap between them, even in their peripheral areas.
With the system described in co-pending Ser. No. 09/160,681, some degree of cross-beam interference is permitted but it is kept to tolerable levels within each target area (relative to the importance of the market served in that area). However, if the satellite's worse case performance for a given target area is slightly worse than expected, the transmission may not work at all in the peripheral portions of the target area, where the ratio of the beam's carrier power C to the cross-beam interference I is dropping rapidly. The C/I ratio increases towards the center of the beam, where the transmission is limited only by weather conditions which can produce temporary outages, as opposed to the more remote areas where there can be no successful transmission at all if interference is worse than expected.
Even if a satellite broadcast system conforms exactly to the original design, circumstances can change in a way that would obsolete the originally designed interference levels. For example, a higher outage rate will generally be tolerated for an area that has both a low overall population and a low population density. A greater loss of service to this type of area would be a reasonable trade-off if it resulted in a commensurate enhancement of service to an adjacent area with a much higher population. However, if the sparsely populated area is growing rapidly, over time its population may increase to a level at which a relatively high outage rate is no longer acceptable. In this situation the original design will be self-defeating, since it will ultimately result in the assignment of outage rates to different areas on a basis other than the relative importance of the current markets in those areas. Furthermore, as the population within a particular market area increases there is a tendency to enlarge the number of different station signals within its channel. This reduces the power available for each individual station signal and leads to an absolute increase in interference effects from adjacent beams, which is exactly the opposite of what is normally desirable for an area with a rapidly growing population.
SUMMARY OF THE INVENTION
The present invention seeks to provide a frequency reuse signal broadcast method that is particularly useful for direct television satellite broadcasts and can be used to maintain a desirable correlation between the service quality for different areas and the market importance of those areas, despite variances between the designed and actual system performances, changes in the relative importance of adjacent target areas through population shifts or otherwise, and reductions in the power of individual station signals resulting from increases in the total number of stations per channel for a given target area.
These goals are achieved with a dynamic system that adjusts the power level of at least one of multiple interfering beams when the beam interference levels within their respective target areas do not satisfy present desired levels. High power amplifiers are used to amplify the channels prior to transmission, and the power level adjustment is accomplished by varying the drives to the amplifiers for the beams whose power is to be adjusted. Despite the fact that it is normally desirable to operate high power amplifiers at close to their maximum power ratings, at least one of the satellite amplifiers is preferably deliberately operated (at least initially) at significantly less than this level to leave room for a later adjustment.
Power adjustments can be made to either one or more beams by increasing the power level (except for beams already operating at maximum power), reducing power levels, and/or increasing the power levels of some beams while reducing the power levels of others. An adjustment to a given beam's output power is preferably made by varying the operating point on its final high power amplifier. For highly stable and controlled situations, the operating point may be adjusted from the ground using only linear gain control on the satellite. However, in most applications an automatic level control (ALC) function on the satellite is used to maintain a stable operating point during rain fade and uplink antenna pattern fluctuations.
These and further features and advantages of the invention will be apparent to those skilled in the art from the following detailed description, taken together with the accompanying drawings.


REFERENCES:
patent: 4163942 (1979-08-01), Acampora et al.
patent: 4298873 (1981-11-01), Roberts
patent: 4689625 (1987-08-01), Barmat
patent: 4855751 (1989-08-01), Ingerson
patent: 5285208 (1994-02-01), Bertiger et al.
patent: 5410731 (1995-04-01), Rouffet et al.
patent: 5539730 (1996-07-01), Dent
patent: 5669062 (1997-09-01), Olds et al.
patent: 5822680 (1998-10-01), Stuart et al.
patent: 5875180 (1999-02-01), Wiedeman et al.
patent: 5924015 (1999-07-01), Garrison et al.
patent: 5966371 (1999-10-01), Sherman
patent: 6020845 (2000-02-01), Weinberg et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dynamic interference optimization method for satellites... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dynamic interference optimization method for satellites..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dynamic interference optimization method for satellites... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2442594

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.