Data processing: presentation processing of document – operator i – Presentation processing of document – Layout
Reexamination Certificate
1998-12-22
2003-11-18
Feild, Joseph H. (Department: 2178)
Data processing: presentation processing of document, operator i
Presentation processing of document
Layout
C715S252000, C707S793000
Reexamination Certificate
active
06651218
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to an information management system and method, and more particularly to a system and method for receiving, analyzing, and managing key information extracted from documents in multiple genres.
BACKGROUND OF THE INVENTION
Today, the typical setting for a personal computer system is still an office. Since personal computers started becoming prevalent over twenty years ago, many of them have been used for such applications as word processing (and other document preparation), financial calculations, and other office-related uses. They have not permeated the home environment, other than for games and for displaced office-type work, because they are not simple to operate.
During that time, the primary user-interface paradigm for interacting with computers has been a keyboard-and-screen system. Although this arrangement has been improved and refined over the years, it is still essentially the same arrangement that has been used with computers for many years, and was used on remote terminals even before the advent of personal computers.
The keyboard-and-screen system presents several advantages. The keyboard typically used with computer systems is an inexpensive item to produce. It includes only around 100 key switches, signals from which are encoded and sent to the CPU. Also, it is only slightly modified from the version used on mechanical typewriter keyboards for over a century. Hence, it is familiar to most people. Moreover, typewriter-style keyboards (or variations thereof) are usable to unambiguously input information in most Western languages.
However, for most people, a keyboard is not an efficient form of input. To use a keyboard effectively, training is required. Even with the requisite training, time and effort is necessary to enter information via keyboard, particularly when the information sought to be entered is already evident in a document or some other communication from another. Moreover, they are sensitive to spelling errors, repetitive stress injury (such as carpal tunnel syndrome and tendinitis), and inconvenience. Both hands are needed to use a traditional keyboard with any speed.
The display screens (or “monitors”) typically used on personal (and other) computer systems have a number of advantages. They are relatively inexpensive. Years of producing television sets and computer monitors have resulted in manufacturing and design efficiencies and improvements in quality.
However, even with their improvements, CRT-based display screens are still typically bulky, heavy, and energy inefficient. They also produce a relatively large amount of heat. For these reasons, CRT displays have not been integrated into many other environments, and computers (and their displays) are usually treated as stand-alone items. Other display technologies have been tried, including plasma displays and liquid crystal displays (LCDs), to name two, but have been less successful because of their relatively high cost and low image quality in comparison to CRT displays. However, LCD prices have been dropping in recent years, and such displays are beginning to be found in a variety of applications.
While the keyboard-and-screen scheme for interacting with computers has proven to be satisfactory in many ways for a long time, there are some problems that are not easily resolved with such a system. For example, there can be a lack of correlation between what is displayed on the screen and what is entered on the keyboard. Any formatting information available on the screen must be entered via sequences of keystrokes on the keyboard, and those sequences in many cases are not intuitive. Furthermore, many symbols and items viewable on the screen can not easily be entered via keyboard.
Recently, however, progress has been made in the usability of alternative user interface schemes. For example, touch-screen-based systems, in which a flat-panel display (such as an LCD) is overlaid with a translucent pressure-sensitive (or other type of touch-sensitive) surface, have been gaining in popularity. Such a system allows the user to directly manipulate the information that is shown on the display. For example, various gestures can be made on the surface to copy, move, annotate, or otherwise alter information on the display. Where such a system falls short, however, is in data input. Where there is no keyboard associated with a touch screen, then data must be input via interaction with the touch-sensitive surface. In some cases, this involves handwriting recognition, which is an imperfect and computationally intensive procedure, or some other means, such as “pressing” (with a stylus or fingertip) a visually displayed keyboard, or by special gestural symbols designed for data entry.
Voice recognition input has also made some progress in recent years. In the past, voice recognition systems have been used primarily in experimental environments. Typically, error rates were extremely high, and to accomplish real-time recognition, the computational resources required were prohibitively high. Recently, however, several commercial software products have made it possible to offer real-time voice recognition on personal computers of the type frequently used in the home. However, such voice recognition systems are speaker-dependent, and as such require a significant amount of training to attain a satisfactory level of performance and a low enough error rate. Moreover, when errors are made (such as in the recognition of homonyms and proper names), it is frequently more convenient to type the corrected word with a traditional keyboard than it is to correct the error by speaking the necessary voice commands and spelling the word for the system. Accordingly, voice recognition shows some promise for the future, but at the present time, is not a practical method of operating and providing input to a personal computer.
Despite promises of cross-platform integration (e.g., computer and television, computer telephony), there is usually little relationship between the data on a personal computer and most of the documents and other tools used for communication and information exchange that are found around a typical individual, office, or family. For example, in a typical home or office, one might find a telephone, an answering machine (or voicemail system), audio equipment (such as a stereo), a fax machine, a television, a computer and printer, a whiteboard or a chalkboard, and various written notes, lists, calendars, mailings, books, and other documents. Unfortunately, the information in one or more of those repositories is usually tied to that repository. For example, addresses in a written address book are not easily used on a computer e-mail system, unless the user goes to the trouble of manually transferring the relevant information from the address book to the computer.
Furthermore, there is a well-known lack of compatibility between systems of different types, even those systems that are designed to work together. For example, in the conversion between one data format and another, there may be a loss of formatting or other information. Furthermore, errors may creep into the conversion, as when optical character recognition (OCR) is used to convert a printed document to a machine-readable one.
Because of these obstacles, the numerous disparate data types and formats persist in the home and office environments. For example, written notes on a family's refrigerator door are frequently a useful and convenient means of communication. The kitchen is often a place of gathering, or at least a place where each family member will visit several times every day. Accordingly, when one family member wishes to communicate with another that he might not see in person, then he might write a short note and post it to the refrigerator door with, for example, a magnet. Other documents, such as calendars, computer printouts, facsimiles, and collaborative lists can also be posted to the refrigerator door.
Several companies have introduced limited-function kitchen computers, or software for general-p
Adler Annette M.
Cass Todd A.
Fishkin Kenneth P.
Marshall Catherine C.
Silverman Alexander E.
Feild Joseph H.
Huynh Cong-Lac
Robb Linda M.
Xerox Corporation
LandOfFree
Dynamic content database for multiple document genres does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Dynamic content database for multiple document genres, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dynamic content database for multiple document genres will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3165254