Dynamic bandwidth monitor and adjuster for remote...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S300000, C128S920000

Reexamination Certificate

active

06564104

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to implantable medical devices (IMDs). Specifically, the invention pertains to an information network for remotely directing and managing patient device data retrieval and device instruction updates. More specifically, the invention enables monitoring, alerting and self configuration of bandwidth or data transfer between an IMD and an external remote device. The collected data may be reviewed by a clinician for appropriate real time therapeutic action as required, or it may be archived to compare patient history and for other future use.
The present invention is compatible and complementary with the elements disclosed in the following pending applications: “Medical System Having Improved Telemetry,” filed Jul. 19, 1999, Ser. No. 09/356,340 now U.S. Pat. No. 6,298,271; “System and Method for Transferring Information Relating to an Implantable Medical Device to a Remote Location,” filed on Jul. 21, 1999, Ser. No. 09/358,081, now U.S. Pat. No. 6,250,309; “Apparatus and Method for Remote Troubleshooting, Maintenance and Upgrade of Implantable Device Systems,” filed on Oct. 26, 1999 Ser. No. 09/426,741 now U.S. Pat. No. 6,442,433; “Tactile Feedback for Indicating Validity of Communication Link with an Implantable Medical Device,” filed Oct. 29, 1999, Ser. No. 09/430,708 “Apparatus and Method for Automated Invoicing of Medical Device Systems,” filed Oct. 29, 1999, Ser. No. 09/430,208, now U.S. Pat. No. 6,385,593; “Apparatus and Method for Remote Self-Identification of Components in Medical Device Systems,” filed Oct. 29, 1999, Ser. No. 09/429,956, now abandoned; “Apparatus and Method to Automate Remote Software Updates of Medical Device Systems,” filed Oct. 29, 1999, Ser. No. 09/429,960, now U.S. Pat. No. 6,363,282; “Method and Apparatus to Secure Data Transfer From Medical Device Systems,” filed Nov. 2, 1999, Ser. No. 09/431,881 “Implantable Medical Device Programming Apparatus Having An Auxiliary Component Storage Compartment,” filed Nov. 4, 1999, Ser. No. 09/433,477, now U.S. Pat. No. 6,411,851; “Remote Delivery Of Software-Based Training For Implantable Medical Device Systems,” filed Nov. 10, 1999, Ser. No. 09/437,615, now U.S. Pat. No. 6,386,882; “Apparatus and Method for Remote Therapy and Diagnosis in Medical Devices Via Interface Systems,” filed Dec. 14, 1999, Ser. No. 09/460,580; “Virtual Remote Monitor, Alert, Diagnostics and Programming For Implantable Medical Device Systems” filed Dec. 17, 1999, Ser. No. 09/466,284, now U.S. Pat. No. 6,497,655; “Instrumentation and Software for Remote Monitoring and Programming of Implantable Medical Devices (IMDs), filed Dec. 21, 1999, Ser. No. 60/172,937; “Application Proxy For Telecommunication-enabled Remote Medical Access Instruments,” filed Dec. 23, 1999, Ser. No. 60/173,081; “Information Network Scheme For Interrogation Of Implantable Medical Devices (IMDs),” filed Dec. 24, 1999, Ser. No. 60/173,064; “Medical Device GUI For Cardiac Electrophysiology Display And Data Communications,” filed Dec. 24, 1999, Ser. No. 60/173,065; “Integrated Software System For Implantable Medical Device Installation And Management,” filed Dec. 24, 1999, Ser. No. 60/173,082; “Dynamic Bandwidth Monitor And Adjuster For Remote Communications With A Medical Device,” filed Dec. 24, 1999, Ser. No. 60/173,083 “Large-Scale Processing Loop For Implantable Medical Devices (IMDs),” filed Dec. 24, 1999, Ser. No. 60/173,079; “Chronic Real-Time Information Management Systems For Implantable Medical Devices (IMDs),” filed Dec. 24, 1999, Ser. No. 60/173,062; “Automatic Voice and Data Recognition For Medical Device Instrument Systems,” filed Dec. 24, 1999, Ser. No. 60/173,071 “Central Switchboard to Facilitate Remote Collaboration With Medical Instruments,” filed Dec. 24, 1999, Ser. No. 60/173,080; which are all incorporated by reference herein in their entireties.
BACKGROUND OF THE INVENTION
In the traditional provision of any medical services, including routine checkups and monitoring, a patient is required to physically present themselves at a provider's office or other clinical setting. In emergency situations, health care providers may travel to a patient's location, typically to provide stabilization during transport to a clinical setting, e.g., an emergency room. In some medical treatment applications, accepted medical practice for many procedures will naturally dictate physical proximity of medical providers and patients. However, the physical transport of patients to clinical settings requires logistical planning such as transportation, appointments, and dealing with cancellations and other scheduling complications. As a result of such logistical complications, patient compliance and clinician efficiency may suffer. In certain situations, delays caused by patient transport or scheduling may result in attendant delays in detection of medical conditions including life-threatening situations. It is desirable, therefore, to minimize situations in which the physical transport of a patient to a clinical setting is required. It may also be desirable to minimize the extent to which a patient or patient information must be considered by a clinician at a particular time, i.e. during an appointment.
After the implantation of an IMD, for example, a cardiac pacemaker, clinician involvement with respect to the IMD has typically only begun. The IMD usually cannot be merely implanted and forgotten, but must be monitored for optimal results, and may require adjustment of certain parameters or settings, or even replacement, in response to or in anticipation of changes in patient condition or other environmental factors, or based on factors internal to the device. IMDs may also contain logic devices such as digital controllers, which may need to undergo firmware or software upgrades or modifications. In addition, information about the IMD may be gathered for treatment or research purposes. For example, many IMDs are capable of storing certain status information or other data regarding their operation internally.
Because IMD operation and patient physiology is preferably monitored to help effect the desired patient outcome, it would be desirable if data collected by an IMD could be viewed remotely and securely. Similarly, it would also be desirable that the instructions installed in an IMD may be modified in response to patient physiologic information, or perhaps be upgraded remotely as well.
In the event a change, modification or reprogramming of the IMDs is indicated, it would be desirable if the instruction could be implemented in the IMD as soon as possible, thus providing more continuous monitoring to proactively effect changes in the IMDs for efficient therapy and clinical care. This scenario may be contrasted with existing practice of responding to an adverse patient event or subjecting the patient to the inconvenience or expense of frequent in-person encounters with a clinician, for example after an unexpected therapy by the device, or to effect other monitoring of device functioning, e.g., spontaneous therapies by the device. For example, an implanted cardioverter defibrillator may administer to the host patient a cardioversion or defibrillation therapy. After such therapy, it is typically desirable to determine the parameters of, for example, an arrhythmia that a therapy was administered in response to, or of the therapy administered.
Despite the limitations of IMDs with regard to processing power, IMDs are in a unique position to monitor physiological systems continuously. High-resolution data can be collected, but implantable devices are ill suited to storage and processing of large amounts of complex physiological data. In contrast, computing power and data storage capacity (processor capability, memory, and adequate power supply) is abundantly available in the non-implantable (“external”) world. The computing industry is still following Moore's Law (stating that transistor density will double every 18 months), delivering increasingly sophisticated computing devices yearly, and some of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dynamic bandwidth monitor and adjuster for remote... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dynamic bandwidth monitor and adjuster for remote..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dynamic bandwidth monitor and adjuster for remote... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3001696

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.