Multiplex communications – Data flow congestion prevention or control – Flow control of data transmission through a network
Reexamination Certificate
1997-12-31
2001-10-23
Chin, Wellington (Department: 2664)
Multiplex communications
Data flow congestion prevention or control
Flow control of data transmission through a network
C370S230000, C370S468000
Reexamination Certificate
active
06307839
ABSTRACT:
FIELD OF THE INVENTION
This invention discloses a dynamic bandwidth allocation system to optimize the transmission of information from a local office to the customer premises equipment along a twisted pair.
BACKGROUND
As deregulation of the telephone industry continues and as companies prepare to enter the local telephone access market, there is a need to offer new and innovative services that distinguish common carriers from their competitors. This cannot be accomplished without introducing new local access network architectures that will be able to support these new and innovative services.
Conventionally, customer premises telephone and/or data connections contain splitters for separating analog voice calls from other data services such as Ethernet transported over digital subscriber line (DSL) modems. Voice band data and voice signals are sent through a communications switch in a central or local office to an interexchange carrier or Internet service provider. DSL data is sent through a digital subscriber loop asynchronous mode (DSLAM) switch which may include a router. The DSLAM switch connects many lines and routes the digital data to a telephone company's broadband digital switch (for example, ATM).
A major problem with this configuration is that interexchange carriers attempting to penetrate the local telephone company's territory must lease trunk lines from the local telephone company switch to the interexchange company's network for digital traffic. Furthermore, the Internet service provider must lease a modem from the local phone company in the DSLAM switch and route its data through the local phone company's digital broadband switch. Thus, the local phone company leases and/or provides a significant amount of equipment, driving up the cost of entry for any other company trying to provide local telephone services and making it difficult for the interexchange companies to differentiate their services. Furthermore, since DSL modem technology is not standardized, in order to ensure compatibility, the DSL modem provided by the local telephone company must also be provided to the end user in the customer premises equipment (CPE). Additionally, since the network is not completely controlled by the interexchange companies, it is difficult for the interexchange companies to provide data at committed delivery rates. Any performance improvements implemented by the interexchange companies may not be realized by their customers, because the capabilities of the local telephone company equipment may or may not meet their performance needs. Thus, it is difficult for the interexchange companies to convince potential customers to switch to their equipment or to use their services. These factors ensure the continued market presence of the local telephone company.
As part of this system, there is a need for improved architectures, services and equipment utilized to distinguish the interexchange companies' products and services.
The current bandwidth allocation scheme devotes the entire channel to a specific mode of service, forcing customers to choose one mode of traffic for use with the twisted pair, e.g. voice, facsimile or Internet. As demand for simultaneous traffic increases, multiple twisted pair lines are required increasing the costs for the users and increasing the investment capital required by the service providers.
This invention addresses these problems by dynamically allocating bandwidth on the twisted pair to support multiple, simultaneous services. By providing for multiple, simultaneous services, the requirement for the installation of multiple twisted pairs dedicated to specific services is minimized. These schemes could be employed for use in other physical transmission media such as coaxial cable and fiber.
SUMMARY OF THE INVENTION
In order to provide an improved network, it is desirable for the interexchange companies to have access to at least one of the twisted-pair lines or alternate wireless facility connecting each of the individual users to the local telephone network before the lines are routed through the conventional local telephone network equipment. It is preferable to have access to these lines prior to the splitter and modem technology offered by the local service providers. By having access to the twisted-pair wires entering the customer's premises, interexchange companies can differentiate their services by providing higher bandwidth, improving the capabilities of the customer premises equipment, and lowering overall system costs to the customer by providing competitive service alternatives.
The new architecture may utilize a video phone and/or other devices to provide new services to an end user; an intelligent services director (ISD) or terminal block disposed near the customer's premises for multiplexing and coordinating many digital services onto a single twisted-pair line; a facilities management platform (FMP) disposed in the local telephone network's central office for routing data to an appropriate interexchange company network; and a network server platform (NSP) coupled to the FMP for providing new and innovative services to the customer and for distinguishing services provided by the interexchange companies from those services provided by the local telephone network.
As part of this system, one aspect of the invention provides a dynamic bandwidth allocation system to optimize the transmission of traffic on the line connecting the customer premises equipment with the local office. As demand for simultaneous traffic at the customer premises equipment increases, the requirement for multiple twisted pair lines is minimized by dynamically allocating an available bandwidth of the twisted pair.
Additional efficiencies for simultaneous transmission of traffic can be achieved by restricting or reducing the available bandwidth for the existing services currently in use. This will likely affect the quality of some services but in many cases the impact will be minimal. Voice quality will be allowed to deteriorate to a predetermined level and facsimile or other data traffic will be transmitted at a slower transmission rate. At some predetermined level, traffic quality will degrade to a level such that service will be unacceptable. At this point, a prioritization scheme will buffer certain traffic at the intelligent services director or the facilities management platform. New requests for services are denied until the required bandwidth required for the service is free. Once the required bandwidth becomes available, buffered traffic is allowed to flow again and service availability will resume.
An alternative scheme allows all services to maintain their highest quality and instead ranks all traffic by a priority scheme and sequentially transmits services. Once the allocated bandwidth is used, the priority scheme discontinues or buffers lower ranking traffic. Once bandwidth resources are released by the higher ranking traffic, the lower ranking traffic is allowed to proceed if the information was buffered. By optimizing the traffic on the twisted pair, requirements for the installation of multiple twisted pairs is minimized as services are added by the user.
REFERENCES:
patent: 5280470 (1994-01-01), Buhrke et al.
patent: 5428819 (1995-06-01), Wang et al.
patent: 5991292 (1999-11-01), Focsaneanu et al.
patent: 6049531 (2000-04-01), Roy
patent: 6075772 (2000-06-01), Brown et al.
patent: 6097722 (2000-08-01), Graham et al.
Gerszberg Irwin
Romain Dennis Matthew
Treventi Philip Andrew
AT&T Corp
Chin Wellington
Pham Brenda
LandOfFree
Dynamic bandwidth allocation for use in the hybrid fiber... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Dynamic bandwidth allocation for use in the hybrid fiber..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dynamic bandwidth allocation for use in the hybrid fiber... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2613015