Durable and efficient equipment for the production of a...

Chemistry: electrical and wave energy – Processes and products – Electrostatic field or electrical discharge

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S186280, C422S186260

Reexamination Certificate

active

06183604

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to durable and efficient equipment for the production of a combustible and non-pollutant gas from underwater arcs and method therefor and more particularly pertains to producing a combustible gas from the underwater arcing of electrodes moving with respect to each other.
2. Description of the Prior Art
The combustible nature of the gas bubbling to the surface from an underwater welding arc between carbon electrodes was discovered and patented in the last century. Various improved equipment for the production of said combustible gas have been patented during this century. Nevertheless, the technology has not yet reached sufficient maturity for regular industrial and consumer production and sales because of numerous insufficiencies, including excessively short duration of the carbon electrodes which requires prohibitive replacement and service, as well as low efficiency and high content of carbon dioxide responsible for the green house effect. As a result of numerous experimentations, this invention deals with a new equipment for the production of a combustible gas from underwater arcs between carbon electrodes which resolves said insufficiencies, and achieves the first known maturity for industrial production and sales.
The technology of underwater electric welding via the use of an arc between carbon electrodes to repair ships, was established in the last century. It was then discovered that the gas bubbling to the surface from underwater arcs is combustible. In fact, one of the first U.S. patent on the production of a combustible gas via an underwater electric arc between carbon electrodes dates back to 1898 (U.S. Pat. No. 603,058 by H. Eldridge).
Subsequently, various patents were obtained in this century on improved equipment for the production of said combustible gas, among which I quote U.S. Pat. No. 5,159,900 (W. A. Dammann and D. Wallman, 1992); U.S. Pat. No. 5,435,274 (W. H. Richardson, Jr., 1995); U.S. Pat. No. 5,417,817 (W. A. Dammann and D. Wallman, 1995); U.S. Pat. No. 5,692,459 (W. H. Richardson, Jr., 1997); U.S. Pat. No. 5,792,325 (W. H. Richardson, Jr., 1998); and U.S. Pat. No. 5,826,548 (W. H. Richardson, Jr., 1998).
The main process in these inventions is essentially the following. The arc is generally produced by a DC power unit, such as a welder, operating at low voltage (25-35 V) and high current (300 A to 3,000 A) depending on available Kwh. The high value of the current brings to incandescence the tip of the carbon electrode in the cathode, with consequential disintegration of the carbon crystal, and release of highly ionized carbon atoms to the arc. Jointly, the arc separates the water into highly ionized atoms of Hydrogen and Oxygen. This causes in the immediate surrounding of the arc a high temperature plasma of about 7,000 F, which is composed by highly ionized H, O and C atoms. A number of chemical reactions then occur within or near said plasma, such as: the formation of the H
2
and O
2
molecule; the burning of H and O into H
2
O; the burning of C and O into CO; the burning of CO and O into CO
2
; and other reactions. Since all these reactions are highly exothermic, they result in the typical, very intense glow of the arc within water, which is bigger than that of the same arc in air. The resulting gases cool down in the water surrounding the discharge, and bubble to the surface, where they are collected with various means. According to numerous measurements conducted at various independent laboratories, the combustible gas produced with the above process essentially consists of 45%-48% H
2
, 36%-38% CO, 8%-10% CO
2
, and 1%-2% O
2
, the remaining gas consisting of parts per million of more complex molecules composed by H, O and C.
This process produces an excellent combustible gas because the combustion exhausts meet all current EPA requirement without any catalytic muffler at all, and without the highly harmful cancerogenic pollutants which are contained in the combustion exhausts of gasoline, diesel, natural gas and other fuels of current use.
Despite the indicated excellent combustion characteristics, and despite research and development conducted by inventors for decades, the technology of the combustible gas produced by an underwater arc between carbon electrodes has not reached industrial maturity until now, and no equipment producing said combustible gas for actual practical usages is currently sold to the public in the U.S.A. or abroad, the only equipment currently available for sale being limited to research and testing. The sole equipment currently sold for public use produce different gases, such as the Brown gas which is not suitable for use in internal combustion engines because it implodes, rather than explodes, during combustion.
The main reason for lack of industrial and consumer maturity is the excessively short duration of the carbon electrodes, which requires prohibitive replacement and services. According to extensive, independently supervised, and certified measurements, the electrodes are typically composed of solid carbon rods of about ⅜ inch in diameter and about 1 foot length. Under 14 Kwh power input, said electrodes consume at the rate of about one and one quarter inch length per minute, requiring the halting of the operation, and replacement of the electrodes every ten minutes.
The same tests have shown that, for 100 Kwh power input, said electrodes are generally constituted by solid carbon rod of about 1 inch diameter and of the approximate length of one foot, and are consumed under a continuous underwater arc at the rate of about 3 inch length per minute, thus requiring servicing after 3 to 4 minutes of operation. In either case of 14 Kwh or 100 Kwh, current equipment requires servicing after only a few minutes of usage, which is unacceptable on industrial and consumer grounds for evident reasons, including increased risks of accidents for very frequent manual operations in a high current equipment.
An additional insufficiency of existing equipment is the low efficiency in the production of said combustible gas, which efficiency is hereinafter referred to the ratio between the volume of combustible gas produced in cubic feet per hour (cfh) and the real electric power at the panel used per hour (Kwh). For instance extensive measurements have established that pre-existing equipment have the efficiency of 2-3 cfh/Kwh. Yet another insufficiency of existing equipment is the high content in said combustible gas of carbon dioxide, which is the gas responsible for the green house effect. In fact, prior to combustion said gas has a CO2 content of 8%-10% with a corresponding content after combustion of about 15% CO2, thus causing evident environmental problems.
SUMMARY OF THE INVENTION
In view of the foregoing disadvantages inherent in the known types of traditional equipment for the production of combustible and non-pollutant gases now present in the prior art, the present invention provides improved durable and efficient equipment for the production of a combustible and non-pollutant gas from underwater arcs and method therefor.
As such, the general purpose of the present invention, which will be described subsequently in greater detail, is to provide new and improved durable and efficient equipment for the production of a combustible and non-pollutant gas from underwater arcs and method therefor and method which has all the advantages of the prior art and none of the disadvantages.
To attain this, the present invention essentially comprises a new and improved system for producing a clean burning combustible gas from an electric arc generating plasma under water. First provided is an electrically conductive anode fabricated of tungsten. The anode is solid in a generally cylindrical configuration with a diameter of about one inch and a length of about three inches. Next provided is a generally Z-shaped crank of a electrically conductive material. The crank has a linear output end supporting the anode. The crank also has a linear input

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Durable and efficient equipment for the production of a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Durable and efficient equipment for the production of a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Durable and efficient equipment for the production of a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2612047

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.