Duplicate laser marking discrete consumable articles

Registers – Coded record sensors – Particular sensor structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C235S380000, C235S381000, C705S002000, C705S022000, C705S028000

Reexamination Certificate

active

06776340

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates in general to marked prepackaged articles, and to simultaneously marking both prepackaged articles and the associated packing with substantially identical non-destructive detectable markings. The detectable markings are formed in situ on both the articles and the packaging therefor without the deposition of any ink or other external marking material, and without degrading the articles or the packaging. The simultaneous application of a pattern of marking radiation, for example, ultraviolet laser energy, to such prepackaged articles through their associated packaging causes radiation sensitive material in the article and the packaging to change to a detectable form in the pattern of the applied radiation. Thus, both can be precisionly marked with identification, security, unique, or the like information such as serial numbers, bar codes, location indicia, and the like. Such simultaneous marking can be accomplished after the articles have been fully packaged, in single or multiple units in a single package, and while the prepackaged articles remain in continuous motion. The markings on the article are preferably detectable eye through a window in the packaging. Thus, the markings on both the packaging and the article are detectable at the same time.
2. Description of the Prior Art
The pharmaceutical industry today produces billions upon billions of human consumable articles such as therapeutically effective pills, tablets, jell-caplets, and the like. These articles contain a variety of different prescription and non-prescription drugs. Due to the variety and large production quantities of these consumable articles numerous potential health problems and concerns have arisen over the possibility of confusing one product with another, or deliberate substitution, or tampering. For example, there has become an increasing need to provide direct identification on each individual consumable article, particularly therapeutically effective articles, so their origins and contents can be traced in an audit, or after the occurrence of an incident of some kind. For example, this has been found to be very valuable for the elderly where over prescription problems can result, as described in Nellhaus U.S. Pat. No. 5,845,264. Nellhaus describes the application of bar codes directly to consumable drugs by utilizing conventional high resolution printing techniques. These techniques deposit selected amounts of a marking material, such as non-toxic or inert ink, directly on the surface of the drugs. A common technique is to apply food grade ink approved by the Food and Drug Administration with an ink jet or rotary wheel printer.
Individually marking each of a plurality of individual articles has many advantages. For example, the articles can always be identified and distinguished from other articles even when removed from their containers or packaging. In addition, consumable articles, for example, can always be distinguished from other non-pharmaceutical consumable articles such as candies, and the like. With the individual marking of each consumable article, serious life threatening mistakes can be avoided. Such individual marking is also advantageous because accidental overdose situations, and the like, can be more quickly diagnosed.
Ablative laser marking of tablets had been proposed previously. Gajdos U.S. Pat. No. 4,906,813 teaches treating tablets with a gas laser beam to induce marking by ablatively burning off layers of the tablets. Riddle U.S. Pat. No. 5,294,770 teaches drilling drug release ports in pharmaceutical tablets with a laser. Undesirably, in both of these teachings, the laser energy is provided at such a high concentration as to physically burn off material from the surface of the tablet, that is, ablatively remove a portion of the material from the tablet. The removal leaves voids that can readily be seen with a 5× or less powered microscope or lens. This ablation can cause many problems. Clear, sharp marking is difficult to achieve depending on the amount of chipping that occurs due to the ablative activity. In addition, the burning caused by the laser may chemically alter the remaining material of the tablet near the mark, which is highly undesirable in pharmaceutical applications. Thus, in order to make it feasible to mark consumable articles with a laser, a non-ablative method is needed.
Security concerns had previously prompted the proposal of numerous expedients, which purported to inhibit or eliminate tampering. Safety concerns require the processing, and, usually the packaging, of certain articles in a sterile environment, such as a clean room. Such security and safety concerns had substantially complicated the marking of articles.
Lasers are generally not presently used to mark consumable articles. Instead, the prior proposed expedients for marking pills utilized ink, frequently the ink jet process, wherein a precisely controlled amount of an edible or inert ink material was deposited directly on the surface of the pill in a predefined pattern. The prior equipment for marking pills was large, expensive, and required high maintenance. As such, the prior equipment was inherently less than perfect and introduced a significant cost increase in the production process, particularly when it was operated in a sterile environment.
Ink marking requires precise control of the objects in order to positively and accurately deposit the ink. This is troublesome since consumable articles, for example, are very small, and they must be mass produced. Individually marking each article at a cost effective rate has proven to be problematic. Production rates are limited because each article must be securely held in position relative to an ink depositing instrument. The production rate may also be undesirably reduced since each freshly marked article must not be disturbed for a particular period of time dictated by the drying requirements of the ink.
Another problem with ink marking technology is maintaining the precise location of the ink head to the article in order to apply the desired amount of ink. This is further complicated when the articles are not of a uniform size in a given batch or from batch to batch of the same or different products. A change in size or shape requires a retooling of the marking equipment. When this precise positioning is not adequately controlled, too much or too little ink may be applied, undesirably resulting in an increased scrap rate. These problems exist with ink imprinting procedures such as ink jets, stamps, rollers and the like.
Still yet another problem is that ink feed devices such as ink jet heads are inherently subject to clogging. Clogging not only increases maintenance costs, but when ink feeds clog during a marking production run, a large quantity of tablets or pills may have to be scrapped. A high scrap rate is highly undesirable.
However, one of the greatest drawbacks to utilizing ink technology to mark consumable articles is the cost associated with preparing the articles for marking. Contaminants, such as organic oils and the like, on the surface of the articles must be removed prior to marking. These contaminants undesirably reduce or eliminate legibility and durability of the ink marking. Their removal requires that special pre-treatment cleaning systems be incorporated into the process. Most pharmaceutical articles require the application of a coating of oil on their surfaces during processing, and this coating must be removed prior to marking with conventional ink techniques. Thus, in pharmaceutical applications, a special pre-treatment cleaning system is required prior to marking. The equipment used to accomplish the pre-treatment cleaning is undesirably large and expensive, and also requires high maintenance.
Given the above problems, the prior art ink based marking systems could achieve maximum production marking rates of only about 1,200 pills per minute, or 72,000 per hour.
Another drawback in utilizing ink based processes to mark consumable articles is

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Duplicate laser marking discrete consumable articles does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Duplicate laser marking discrete consumable articles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Duplicate laser marking discrete consumable articles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3332524

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.