Dual voltage multiple configuration battery and adapter

Chemistry: electrical current producing apparatus – product – and – Cell support for removable cell – For plural cells

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C429S100000, C429S160000, C429S149000, C206S703000, C439S754000

Reexamination Certificate

active

06548205

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention is related to the field of electrochemical engineering, and in particular, to dual voltage, multiple configuration batteries.
2. Description of the Background Art
Two requirements must be met before a battery can be used to provide power to an electrical device.
First, the voltage of the battery must match the voltage required by the device. For example, a device that needs 10 volts to operate will use a 10 volt battery. This requirement is straightforward and simple.
Second, the shape of a battery must match a device's battery footprint before it can be used to provide power to that device. This second requirement is more difficult to meet. This requirement is a problem because different electrical devices have different battery footprints. Thus, in order for a 10 volt battery to be used in a device that requires 10 volts, the shape of that battery must match the device's battery footprint.
As a result, batteries of equal voltage are currently manufactured in different shapes and configurations in order to meet this second requirement. This is known in the art as a proliferation of different battery shapes. This proliferation of battery shapes is a problem because battery vendors have a difficult time supplying the various battery shapes that are needed to power the devices that are in the marketplace. For example, in order to manufacture every different battery shape that is required by equipment manufacturers, vendors have to set up a separate production line for each shape.
Also, battery shape proliferation hurts consumers. Currently, consumers have to purchase and store batteries that have equal voltages but different shapes. These purchases are relatively low volume purchases, which results in a higher unit price for an individual battery. This proliferation also increases the logistics involved in supplying each device with a specific battery that is shaped to match that device's battery footprint.
The problems that vendors and consumers are having because of battery shape proliferation show a strong need to alleviate this proliferation of battery shapes.
Currently, there is a method of partially alleviating the proliferation of battery shapes. This is done by using the smallest individual modules or cells of a battery to create “multiple configuration batteries.” Consumers attach the small modules or cells in series and/or parallel electrical configurations to form many different shapes of batteries. Thus, the shape of a battery can be configured to match the battery footprint of an electrical device.
Logistically, this approach is very sound because vendors and consumers only have to stock a small family of common modules and cells. Since each module and cell is used in many types of battery configurations, each module and cell can be purchased by consumers in large quantities, then combined to form batteries of various shapes. This provides consumers with the ability to make large volume purchases of a common item at a low unit price.
However, in the field, attempts to use modules and cells as building blocks to create various shaped batteries is not so simple. Groups of partially used modules or cells from one device can not be intermingled with modules or cells used in another device. The reason for this is that one set of modules or cells may have been discharged by 50 percent and the other set of modules or cells may have been discharged by 75 percent. Accidentally mixing these two modules or cells to form batteries creates reliability and safety problems for the user.
Thus, in addition to alleviating battery shape proliferation, there is a strong need to eliminate the safety problems found in previous multiple configuration batteries.
The present invention meets these needs by using a design that enables multiple configuration batteries to be mass produced and to fit into many different battery footprints and battery boxes. Therefore, an advantage of the present invention is that it alleviates proliferation of battery shapes.
The design of the present invention eliminates the safety problems of previous multiple configuration batteries. Thus, another advantage of the present invention is providing multiple configuration batteries that are safer to use.
There are several additional advantages of the present invention. The battery design of the present invention has pertinent applications in the military, such as simplifying field logistics, lowering battery purchase costs and supplying power to electrical devices having various shapes and sizes of battery footprints.
Also, the present invention can be used by commercial battery vendors to simplify their production lines. Vendors can simply assemble one battery based on the design of the present invention. This design can then be reconfigured by consumers into several different shapes and voltages, so that the shape of the battery will match the battery footprint used by any given electrical device.
SUMMARY OF THE INVENTION
The present invention is a multiple configuration battery that eliminates the safety problems of previous multiple configuration batteries. The invention solves the problems of battery proliferation and unsafe multiple configuration batteries by physically hinging all of the reconfigureable modules and cells together. The cells are physically attached to each other. The modules of each cell are electrically and physically connected to each other. The cells can then be connected to the electrical device in electrical series or electrical parallel.
Therefore, all components of the battery are discharged simultaneously. This eliminates the accidental mingling that occurs in previous modular/cell design schemes, thus increasing the safety to the user of the battery, while providing a multiple configuration battery that is shaped to match the battery footprint of the electrical device. The multiple configuration battery can be configured to fit into four basic prismatic shapes of battery footprints, where each shape has two voltages. Therefore, one multiple configuration battery provides eight different batteries.
In another embodiment of the invention, an adapter can snap on to a dual voltage multiple configuration battery. The adapter and multiple configuration battery form an assembly that is electrically and physically equal to a conventional prismatic shaped battery, and matches the conventional battery's design requirements. The assembly of the present invention thus allows the present invention to replace the conventional batteries used in existing devices.
The assembly of the present invention is also more flexible for future applications than conventional batteries. When the adapter is removed, the dual voltage multiple configuration battery can form an additional four shapes, each having two different voltages. Thus, the battery and adapter assembly alleviates battery shape proliferation because it replaces one battery with a battery assembly that can form nine distinct batteries.


REFERENCES:
patent: 4957829 (1990-09-01), Holl
patent: 5744260 (1998-04-01), Sim
patent: 5853915 (1998-12-01), Suto
patent: 5874181 (1999-02-01), Tam

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dual voltage multiple configuration battery and adapter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dual voltage multiple configuration battery and adapter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual voltage multiple configuration battery and adapter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3028375

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.