Electric lamp and discharge devices: systems – Periodic switch in the supply circuit – Impedance or current regulator in the supply circuit
Reexamination Certificate
1999-04-14
2001-03-06
Wong, Don (Department: 2821)
Electric lamp and discharge devices: systems
Periodic switch in the supply circuit
Impedance or current regulator in the supply circuit
C315S20000A, C315S307000, C315S360000
Reexamination Certificate
active
06198230
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the simultaneous dual use of radiation, e.g. visible light, for both a conventional application, e.g., illumination, combined with the additional application of transmitting information without wires. The present invention further relates to electronic ballast circuits for electric discharge lamps, e.g., fluorescent lamps. The present invention further relates to the application of a time-varying, modulated current through the lamp to produce electronically detectable variations in the lamp light that are invisible to the human eye. The present invention further relates to coding information in variations in the lamp light for purposes of transmitting all kinds of information, including, but not limited to, digital data, audio, textual, and graphical signals. The present invention further relates to efficient coding schemes to maximize the bandwidth or information transfer capability of the optical data channel. Wide bandwidth and efficiency are critical for intranets or other wide area networks that could be carried on the lighting in an office or factory. The present invention further relates to efficient power electronic circuits capable of producing modulated currents in a lamp with high power efficiency, maximum data rate, and the possibility of incorporating needed safety features such as galvanic isolation. The present invention further relates to the construction of receivers for detection of the modulated information in the lamp light.
BACKGROUND OF THE INVENTION
Over half of the artificial light produced in the United States comes from lamps in which an electric discharge through a gas is used to produce illumination (J. Waymouth,
Electric Discharge Lamps
, MIT Press, Cambridge, Mass., 1971). The prevalence of electric discharge (e.g., fluorescent) illumination has led us to develop ways to inexpensively use discharge lamps for communication.
The basic idea of using lighting to send information as well as to provide illumination appears to have originated at least as early as 1975 (M. Dachs, “Optical Communication System,” U.S. Pat. No. 3,900,404, August 1975). In the Dachs patent, the inventor discloses an analog amplitude-modulation (AM) scheme to modulate the arc current in a fluorescent lamp, the “carrier” signal, with an audio information signal. A more recent patent (K. King, R. Zawislak, and R. Vokoun, “Boost-Mode Energization and Modulation Circuit for an Arc Lamp,” U.S. Pat. No. 5,550,434, August 1996) discloses an updated electronic circuit that also provides for AM modulation of the arc current with an analog signal. Such techniques are generally undesirable for the direct transmission of data since, among other reasons, low frequency content in the data may lead to perceptible flicker in the light output, and the noise immunity of the overall transceiver system is not optimal. Techniques for encoding digital information have been described in M. Smith, “Modulation and Coding for Transmission using Fluorescent Lamp Tubes,” U.S. Pat. No. 5,657,145, August 1997 and T. Gray, “Transmission System,” U.S. Pat. No. 5,635,915, June 1997 which employed either a pulsed AM or a phase modulation technique, respectively. Both techniques transmitted data at a rate that is on the same order of magnitude as that of the power-line frequency (50/60 Hz), i.e., relatively slowly compared to typical modem lamp arc frequencies in the range of 20,000 to 40,000 Hertz. Other communication schemes have also been proposed that do not use the lamp light as the carrier, but instead use the lamp fixture as an antenna for transmitting conventional radio wave or microwave signals. In K. Uehara and K. Kagoshima, “Transceiver for Wireless In-Building Communication Sytem [sic],” U.S. Pat. No. 5,424,859, June 1995, for example, the inventors disclose techniques for mounting a microwave antenna on the glass surface of fluorescent and incandescent lamps.
In T. Buffaloe, D. Jackson, S. Leeb, M. Schlecht, and R. Leeb, “Fiat Lux: A Fluorescent Lamp Transceiver,” Applied Power Electronics Conference, Atlanta, Ga., June 1997, the authors outlined the possibility of using pulse-code modulation to transmit data with a fluorescent lamp. This scheme made use of a tri-level pulse coding, which led to a ballast design with a relatively high-complexity compared to the architectures described in the present invention. Also, the associated receiver was more complicated, and unable to support the high data rates achievable with the present invention.
We have invented a communication network based on frequency modulated radiation (e.g., visible light) that eliminates the disadvantages of the systems in the prior art. It enables higher power commercial scale lighting systems to be used to transmit the signal. It eliminates undesirable visual flicker in the system and so allows simultaneous continuous use of the lighting fixtures as lighting while also providing the medium for communication. It allows analog, digital or analog/digital data to be sent and received. It increases the bandwidth available to transmit data, and it enables a number of applications, such as multiple digital data streams, to be performed using a single lamp. Improvements made in the current invention can result in unprecedented performance advantages in the operation and implementation of lamp transceiver systems.
This invention is the first to propose establishing a transceiver system using any radiating transmitter with dual utility where the primary utility is any application, not just illumination but also possibly range finding, lane marking, or other applications, and the secondary utility is communication. This invention is the first to propose the transmission of bandlimited analog information such as audio signals by using frequency modulation, which enhances the noise immunity and available bandwidth over previous schemes while specifically avoiding sensory perceptible flicker in the transmission. It is the first to propose the efficient transmission of digital data using pulse code frequency modulation, and also the first to propose encoding digital bits in sidebands around the carrier frequency of the transmitter. It is the first to propose the use of a nonlinear detector in a dual-use network receiver to improve settling and detection time of pulse-coded data. These schemes for the transmission and reception of digital data substantially enhance the available data transmission rate in comparison to schemes in the prior art, again while elimination perceptible flicker. It is the first to disclose schemes for creating multiple data transmission channels using the same transmitter, and the first to propose a receiver in a “dual-use” network capable of selecting one channel from a spectrum of available choices. It is the first to propose a receiver with variable “lock-in” or transmitter capture characteristics, allowing the tailoring of the behavior of the receiver as it locks on to different transmitters. This feature could be especially important for optimizing the receiver's behavior in way-finding applications, and in environments with many different closely spaced transmitters, to ease the process of acquiring and holding a data channel between the transmitter and receiver.
SUMMARY OF THE INVENTION
In one aspect, the invention is apparatus for generating electromagnetic radiation in which the radiation has both a first and a second utility. The electromagnetic radiation is modulated to produce electronically detectable variations to achieve the second utility, the variations not affecting the first utility. In one embodiment, the second utility is transmission of information. In this embodiment, the electromagnetic radiation is visible light in which the first utility is illumination and the second utility is the sending of information, the variations in the visible light being invisible to the human eye. Suitable apparatus is a lamp which may, for example, be a fluorescent, cold cathode or a high-intensity discharge lamp. Any transmitter of radiated
Hovorka George B.
Jackson Deron
Leeb Steven B.
Lupton Elmer C.
Choate Hall & Stewart
Jarrell Brenda H.
Pasternack Sam
Talking Lights
Tran Thuy Vinh
LandOfFree
Dual-use electronic transceiver set for wireless data networks does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Dual-use electronic transceiver set for wireless data networks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual-use electronic transceiver set for wireless data networks will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2512338