Animal husbandry – Animal controlling or handling – Electromagnetic remote control
Reexamination Certificate
2000-07-03
2002-07-09
Jordan, Charles T. (Department: 3644)
Animal husbandry
Animal controlling or handling
Electromagnetic remote control
C119S720000, C119S719000
Reexamination Certificate
active
06415742
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable.
BACKGROUND OF THE INVENTION
1. Field of Invention
This invention relates to a system for confining and training a pet using a stationary transmitter which generates deterrent signals to define a confinement boundary and a remote portable transmitter which communicate with the stationary transmitter to correct a pet residing within the confinement boundary for training purposes.
2. Description of the Related Art
A growing number of pet owners enjoy the benefits of electronic pet confinement and training systems. Often however, the confinement and training systems are incompatible making use of both an electronic pet confinement system and an electronic pet training system unnecessarily complicated. For example, the confinement system and the training system may operate on separate frequencies or use different types of encoding such that the pet owner must either attach more than one electronic pet collar to the pet to be able to employ both confinement and training functions or selectively employ one of the electronic pet collars at a time.
The first approach may not be practicable particularly with smaller pets which may be unable or unwilling to carry the weight of two collars or upon which two collars will not fit. The second approach requires a pet owner to give up boundary-based confinement in favor of training presenting the possibility of the pet escaping the confinement boundary and moving beyond the range of the portable transmitter while not wearing the confinement collar.
Other systems have been developed to implement both electronic confinement and training functions for a pet. U.S. Pat. No. 5,559,498 issued to Michael D. Westrick, et al., on Sep. 24, 1996 discloses a combination confinement and remote training transmitter. The system taught by Westrick, et al., includes a confinement transmitter and a separate remote transmitter which are used to contain and train an animal wearing a receiver unit. The receiver unit includes two receivers, one responsive to the confinement transmitter and one responsive to the remote transmitter. Both receivers are monitored by a processing device which decodes only one signal. When both the confinement and the remote training signal are present, the remote training signal takes priority. The processing device then activates a stimulus delivery system to apply the appropriate corrective stimulus. The method and apparatus taught by Westrick, et al. require the inclusion of two receivers within the collar worn by the pet. This necessarily increases the size and weight of the collar making it less practical for smaller pets.
Accordingly, there is a need for a system for both confining and training a pet which is suited for use with smaller pets. Such a system would reduce the size and weight of a collar which must be worn by such a pet.
Therefore, it is an object of the present invention to provide a single system for confining and training an animal.
It is another object of the present invention to provide a system which incorporates a single receiver module into a collar for responding to a deterrent stimulus, thereby reducing the size and weight of the collar.
It is a further object of the present invention to provide a system wherein the stationary transmitter includes additional electronics to respond to training signals and issue the appropriate deterrent stimulus to the pet.
BRIEF SUMMARY OF THE INVENTION
A system for confining and training a pet is provided. The system includes two transmitters, one configured as a stationary transmitter in communication with a receiver collar worn by a pet and the other configured as a portable transmitter for controlling the operation of the stationary transmitter.
The stationary transmitter generates a radio frequency deterrent signal which has at least one component which is carried and broadcast by a wire loop antenna which bounds the confinement area. The confinement area is divided into at least two distinct zones. In the illustrated embodiment, the deterrent signal includes both a warning signal and a correction signal each having a distinct predetermined frequency and a predetermined independent signal strength. A pet is encouraged to remain within the confinement area by a deterrent stimulus produced by a receiver module worn by the pet. The receiver collar is responsive to the deterrent signal generated by the stationary transmitter. However, to provide a training mechanism, the portable transmitter communicates with the stationary transmitter to increase the range of the selected deterrent signal produced by the stationary transmitter.
The system is configured to provide both warning and correction signals from either of the stationary transmitter or the portable transmitter. The stationary transmitter includes a correction signal generator which produces a correction signal having a predetermined frequency and a warning signal generator which produces a warning signal having a second predetermined frequency. In electrical communication with the correction signal generator and the warning signal generator is an amplifier which amplifies each signal by an adjustable amplification factor. A processing device in electrical communication with the amplifier controls the amplification factor. The amplified correction signal is transmitted through the wire loop antenna via a transmitter.
The portable transmitter includes at least one switch operable by a trainer to select the desired deterrent stimulus. When one of the switches is pressed, a training signal generator produces a training signal that carries information regarding the selected deterrent stimulus. The training signal is then broadcast by a transmitter. The stationary transmitter includes a receiver responsive to the training signal from the portable transmitter. The receiver is in electrical communication with the processing device. The processing device decodes the training signal to identify the deterrent stimulus selected by the operator. Using the information carried by the training signal, the processing device turns off the all signals but the signal corresponding to the desired deterrent signal and increases the gain of the appropriate amplifier thereby boosting the signal strength such that the entire confinement area is filled with the desired deterrent signal. In an alternate embodiment separate generation paths are provided allowing the frequency and amplitude, or signal strength, of the correction signal and the warning signal are independently controlled.
The receiver module includes an antenna and a receiver for receiving the RF deterrent signal from the stationary transmitter. The received RF deterrent signal is then decoded by signal decoding logic. Once the RF deterrent signal is decoded, at least one control signal is routed to the appropriate output device.
To provide additional control, an intensity level controller in electrical communication with the signal decoding logic is added. The intensity level controller is in communication with the deterrent stimulus generator to adjust the intensity of the deterrent stimulus applied to the pet. The intensity level selection switch, the signal decoding logic, and the intensity level controller work together to provide an adjustable intensity level for the applied stimulus. Further, the system optionally includes a collar ID system for use with multiple pets to allow for differing deterrent conditions to be applied to differing pets.
A system for confining and training a pet has been disclosed having advantages over the prior art. The system utilizes a stationary transmitter to generate deterrent signals which are broadcast along a wire-loop bounding a confinement area. The pet wears a receiver module responsive to the deterrent signals which administers an appropriate deterrent stimulus when the pet approaches the confinement boundary. Further, the system includes a portable transmitter which is used for training purposes. The
Frankewich, Jr. Walter J.
Jameson James L.
Lee Thomas B.
Lee, IV Albert L.
Mainini Christopher E.
Holzen Stephen
Jordan Charles T.
Pitts & Brittian P.C.
Radio Systems Corporation
LandOfFree
Dual transmitter pet confinement and training system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Dual transmitter pet confinement and training system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual transmitter pet confinement and training system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2834711