Chemistry: electrical current producing apparatus – product – and – Current producing cell – elements – subcombinations and... – Cell enclosure structure – e.g. – housing – casing – container,...
Reexamination Certificate
1999-06-22
2002-03-26
Maples, John S. (Department: 1745)
Chemistry: electrical current producing apparatus, product, and
Current producing cell, elements, subcombinations and...
Cell enclosure structure, e.g., housing, casing, container,...
C429S179000
Reexamination Certificate
active
06361897
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to electric storage batteries, and more particularly, to batteries for use in modular power supplies as well as power supplies constructed using such batteries.
Storage batteries, particularly those used for stand-by emergency power, such as in telecommunications equipment and uninterruptable power supplies for computers, are often assembled on site from modules containing multiple battery cells. For example, modules containing four two-volt cells connected in series produce eight volts. A 48 volt battery can be assembled by connecting six modules in series, and a 120 volt battery can be produced by connecting 15 modules in series. Capacities can be varied by the number of plates in each cell (with a commensurate increase in the individual cell dimensions) or by different wiring connections between the cells or modules, such as connecting some of the modules in parallel.
It is known to provide such modules by placing batteries in trays. The trays are then held in rectangular steel racks or stands for support. The modules can be installed to lie horizontally, stand vertically or be mounted face up in the metal stands. Cells within the racks may be installed and replaced individually and the cell terminal posts are generally exposed for making electrical connections. Generally, conductor bars or cables are used to make electrical connections between adjacent cells and/or adjacent modules. Jumpers are also used to make the connections between modules to provide the desired battery voltage and capacity.
It has also been known to use connector bars between cells and to arrange the batteries and modules to provide a minimum spacing in order to allow the use of short conductor bars to reduce losses. However, longer conductor bars are still required to connect multiple modules together.
It is also known to provide keyed connectors on the battery modules in order to prevent a battery module from being installed improperly. Preferably, the keyed connectors are provided on the racks such that a standardized module can be provided. However, the known prior art power supplies all require individual connections to be made, either between individual cells being replaced or assembled or between preassembled modules which may be preassembled prior to installation in an assembly rack. This requires additional on site time during assembly of a new modular power supply and also requires additional time for maintenance since the jumpers or connector bars connected between the individual cells and modules must be manually removed and reinstalled in order to remove and/or replace a battery cell or module.
BRIEF SUMMARY OF THE INVENTION
Briefly stated, the present invention provides a battery for use with a modular battery assembly. The battery includes two poles, with each pole including a dual terminal. Each dual terminal includes a first connector and a second connector. The battery is adapted to be mounted in either of a first housing, with a wiring board having a prewired circuit located thereon connected to slide-in terminals arranged on the wiring board, and a second housing without a prewired circuit. The slide-in terminals arranged on the wiring board are adapted to be located in complementary positions to the first connectors on the battery such that when the battery is slidably received in the first housing, the first connectors are adapted to be received in the complementarily positioned slide-in terminals, and when the battery is located in the second housing, the second connectors are connectable using jumpers such that the battery is adapted to be used interchangeably in the first and second housings.
In another aspect, the present invention provides, a modular power supply assembly. The assembly includes a housing adapted to slidably receive more than one battery. A wiring board is located in the housing and includes a prewired circuit located thereon connected to slide-in terminals arranged on the wiring board. A plurality of batteries are provided with each battery having two battery poles. Each battery pole includes a dual terminal, with each dual terminal having a first connector and a second connector. The batteries are slidably mounted in the housing. The slide-in terminals arranged on the wiring board are located in complementary positions to the first connectors on the batteries, such that as each battery is slidably received in the housing, the first connectors are received in the complementarily positioned slide-in terminals to connect the batteries in accordance with the prewired circuit.
In another aspect, the present invention provides a method for connecting a plurality cells together for a power supply. The method includes providing a plurality of battery cells, with each battery cell having two battery poles and each battery pole including a dual terminal. Each dual terminal has a first connector and a second connector, with the first connectors being adapted to be received in slide-in sockets and the second connectors including a jumper connection, and one of: (a) providing a back plane wiring board in a first housing which is adapted to slidably receive more than one battery, providing a prewired circuit on the back plane wiring board, with the prewired circuit being connected to slide-in terminals arranged on the wiring board, locating the slide-in connectors on the back plane wiring board in complementary positions to the first connectors located on each battery pole of the battery cells, and sliding each battery cell into the first housing such that the first connectors on each of the poles of each battery are received in the complementarily located slide-in connectors on the back plane wiring board to complete the circuit between the cells to form a power supply having a desired output voltage; and (b) positioning the battery cells in a second housing, and connecting jumpers to the second connectors on the poles of the battery cells in a desired circuit to form a power supply having a desired output voltage, such that the same battery cells can be used interchangeably for assembling power supplies without back plane wiring boards.
REFERENCES:
patent: 2942058 (1960-06-01), Herold
patent: 3607434 (1971-09-01), Allen et al.
patent: 4347294 (1982-08-01), Mejia
patent: 4425414 (1984-01-01), Solomon
patent: 5104752 (1992-04-01), Baughman et al.
patent: 5140744 (1992-08-01), Miller
patent: 5149605 (1992-09-01), Dougherty
patent: 5304434 (1994-04-01), Stone
patent: 5366827 (1994-11-01), Belanger et al.
patent: 5639571 (1997-06-01), Waters et al.
patent: 40-6124698 (1994-05-01), None
Enersys Inc.
Maples John S.
LandOfFree
Dual terminal battery for modular power supply and power supply does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Dual terminal battery for modular power supply and power supply, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual terminal battery for modular power supply and power supply will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2887402