Dual spin valve sensor with self-pinned layer specular...

Dynamic magnetic information storage or retrieval – Head – Magnetoresistive reproducing head

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06219208

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a dual spin valve sensor with a self-pinned layer and a specular reflector and, more particularly, to a read head that produces a double spin valve effect with a pinned layer structure and self-pinned layer wherein the pinned layer structure is pinned by a pinning layer and the self-pinned layer is pinned by sense current fields and interfaces a specular reflector layer for reflecting conduction electrons into the mean free path of conduction electrons.
2. Description of the Related Art
An exemplary high performance read head employs a spin valve sensor for sensing magnetic fields on a moving magnetic medium, such as a rotating magnetic disk or a linearly moving magnetic tape. The sensor includes a nonmagnetic electrically conductive first spacer layer sandwiched between a ferromagnetic pinned layer and a ferromagnetic free layer. An antiferromagnetic pinning layer interfaces the pinned layer for pinning the magnetic moment of the pinned layer 90° to an air bearing surface (ABS) which is an exposed surface of the sensor that faces the magnetic medium. First and second leads are connected to the spin valve sensor for conducting a sense current therethrough. The magnetic moment of the free layer is free to rotate in positive and negative directions from a quiescent or zero bias point position in response to positive and negative magnetic signal fields from a moving magnetic medium. The quiescent position is the position of the magnetic moment of the free layer when the sense current is conducted through the sensor without magnetic field signals from a rotating magnetic disk. The quiescent position of the magnetic moment of the free layer is preferably parallel to the ABS. If the quiescent position of the magnetic moment is not parallel to the ABS the positive and negative responses of the free layer will not be equal which results in read signal asymmetry.
The thickness of the spacer layer is chosen to be less than the mean free path of electrons conducted through the sensor. With this arrangement, a portion of the conduction electrons is scattered by the interfaces or boundaries of the spacer layer with the pinned and free layers. When the magnetic moments of the pinned and free layers are parallel with respect to one another scattering is minimal and when their magnetic moments are antiparallel scattering is maximized. An increase in scattering of conduction electrons increases the resistance of the spin valve sensor and a decrease in scattering of the conduction electrons decreases the resistance of the spin valve sensor. Changes in resistance of the spin valve sensor is a function of cos &thgr;, where &thgr; is the angle between the magnetic moments of the pinned and free layers. This resistance, which changes when there are changes in scattering of conduction electrons, is referred to in the art as magnetoresistance (MR). Magnetoresistive coeffecient is dr/R where dr is the change in magnetoresistance of the spin valve sensor from minimum magnetoresistance (magnetic moments of free and pinned layers parallel) and R is the resistance of the spin valve sensor at minimum magnetoresistance. For this reason a spin valve sensor is sometimes referred to as a giant magnetoresistive (GMR) sensor. A spin valve sensor has a significantly higher magnetoresistive (MR) coefficient than an anisotropic magnetoresistive (AMR) sensor which does not employ a pinned layer.
The spin valve sensor is located between first and second nonmagnetic nonconductive first and second read gap layers and the first and second read gap layers are located between ferromagnetic first and second shield layers. The distance between the first and second shield layers is referred to in the art as the read gap. The read gap determines the linear bit density of the read head. When a magnetic disk of a magnetic disk drive rotates adjacent the read sensor, the read sensor detects magnetic field signals from the magnetic disk only within the read gap, namely the distance between the first and second shield layers. There is a strong-felt need to decrease the read gap so that the sensor is capable of detecting an increased number of field signals along a track of the rotating magnetic disk. By decreasing the read gap the magnetic storage capability of the disk drive is increased. These kinds of efforts have improved the magnetic storage of computers from kilobytes to megabytes to gigabytes.
Another scheme for increasing the magnetic storage of a disk drive in a computer is to provide a read sensor that produces a dual spin valve effect. This is accomplished by providing a ferromagnetic free layer structure between nonmagnetic conductive first and second spacer layers with the first and second spacer layers are located between first and second ferromagnetic pinned layer structures. The first pinned layer structure is exchange coupled to a first antiferromagnetic pinning layer which pins a magnetic moment of the first pinned layer structure in a first direction, typically perpendicular to the ABS, either toward or away from the ABS, and the second pinned layer structure is exchange coupled to a second antiferromagnetic pinning layer which pins the magnetic moment of the second pinned layer structure in the same direction as the moment of the first pinned layer structure. This scheme sets the magnetic moments of the first and second pinned layer structures in phase with respect to one another. The free layer structure has a magnetic moment which is typically parallel to the ABS, so that when magnetic field signals from a rotating magnetic disk are sensed by the read sensor the magnetic moments of the free layers rotate upwardly or downwardly, producing an increase or decrease in the aforementioned magnetoresistance, which is detected as playback signals. The importance of the dual spin valve sensor is that the spin valve effect is additive on each side of the free layer between the free layer structure and the first and second pinned layer structures. Unfortunately, the dual spin valve sensor is significantly thicker than a single pinned spin valve sensor because of the thicknesses of the first and second pinning layers. While the thicknesses of the various layers of a typical spin valve sensor range between 10 Å-70 Å the thicknesses of the antiferromagnetic pinning layers vary in a range from 120 Å-425 Å. Iridium manganese (IrMn) permits the thinnest antiferromagnetic pinning layer of about 120 Å whereas an antiferromagnetic pinning layer composed of nickel oxide (NiO) is typically 425 Å. There is a strong-felt need to provide a dual GMR or spin valve sensor which is thinner than prior art dual spin valve sensors so that a dual spin valve effect can be obtained without significantly increasing the read gap.
SUMMARY OF THE INVENTION
The present invention provides a novel dual spin valve sensor which is thinner than prior art dual spin valve sensors. The present dual spin valve sensor may be the same as the aforementioned dual spin valve sensor except one of the pinned layer structures is a self-pinned layer which is located between a specular reflector structure and one of the spacer layers. The magnetic moment of the self-pinned layer is not pinned by an antiferromagnetic pinning layer but, in contrast, the magnetic moment is pinned by sense current fields from other layers in the spin valve sensor when the sense current is conducted through the spin valve sensor. In order for this to occur the thickness of the self-pinned layer should be maintained below 15 Å with a preferable thickness of 10 Å. The reason for this is because the thicker the self-pinned layer the greater the sense current fields that are required to pin the magnetic moment of the self-pinned layer. Unfortunately, when the self-pinned layer is thin there is a scattering of conduction electrons at a boundary of the self-pinned layer, which reduces the number IDS of conduction electrons in the mean free path which, in turn,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dual spin valve sensor with self-pinned layer specular... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dual spin valve sensor with self-pinned layer specular..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual spin valve sensor with self-pinned layer specular... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2525410

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.