Dual screen element having upper scalping screen adhered to...

Classifying – separating – and assorting solids – Sifting – Elements

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C209S392000, C209S403000, C209S269000

Reexamination Certificate

active

06186337

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to screens for vibratory separators, to shale shakers with such screens, and to methods for using such screens and shakers.
2. Description of Related Art
The need for solids control in drilling mud used in hydrocarbon well drilling is well known in the prior art. Drilling mud, typically a mixture of clay and water and various additives, is pumped down through a hollow drill string (pipe, drill collar, bit, etc.) into a well being drilled and exits through holes in a drillbit. The mud picks up cuttings (rock) and other solids from the well and carries them upwardly away from the bit and out of the well in a space between the well walls and the drill string. At the top of the well, the solids-laden mud is discharged over a shale shaker, a device which typically has a series of screens arranged in tiered or flat disposition with respect to each other. The prior art discloses a wide variety of vibrating screens, devices which use them, shale shakers, and screens for shale shakers. The screens catch and remove solids from the mud as the mud passes through them. If drilled solids are not removed from the mud used during the drilling operation, recirculation of the drilled solids can create weight, viscosity, and gel problems in the mud, as well as increasing wear on mud pumps and other mechanical equipment used for drilling.
FIG. 1A
discloses one example of a typical prior art shaker system (e.g. as shown in U.S. Pat. No. 5,190,645). A well is being drilled by a bit carried on a string of drill pipe as drilling mud is pumped by a pump into the drill pipe and out through nozzles in the bit. The mud cools and cleans the cutters of the bit and then passes up through the well annulus flushing cuttings out with it. After the mud is removed from the well annulus, it is treated before being pumped back into the pipe. The mud enters a shale shaker where the relatively large cuttings are removed. The mud then enters a degasser where gas can be removed if necessary. The degasser may be automatically turned on and off, as needed, in response to an electric or other suitable signal produced by a computer and communicated to degasser. The computer produces the signal as a function of data from a sensor assembly associated with shale shaker. The mud then passes to a desander and (or a desilter), for removal of smaller solids picked up in the well. The mud next passes to a treating station where, if necessary conditioning media, such as barite, may be added. Suitable flow controls e.g. a valve, control the flow of media. The valve may be automatically operated by an electric or other suitable signal produced by the computer as a function of the data from sensor assembly. From the treatment station, the mud is directed to a tank from which a pump takes suction, to be re-cycled through the well. The system shown in exemplary, and it will be understood that additional components of the same types (e.g. additional treatment stations) or other types (e.g. centrifuges) could be included. Such a shale shaker or vibrator separator apparatus may employ any known screen or screens and may have a single screen or combination of two or more screens, one above the other, as is well known in the art.
In some shale shakers a fine screen cloth is used with the vibrating screen. The screen may have two or more overlying layers of screen cloth. The prior art discloses that the layers may be bonded together; and that a support, supports, or a perforated or apertured plate may be used beneath the screen or screens. The frame of the vibrating screen is resiliently suspended or mounted upon a support and is caused to vibrate by a vibrating mechanism, e.g. an unbalanced weight on a rotating shaft connected to the frame. Each screen may be vibrated by vibratory equipment to create a flow of trapped solids on top surfaces of the screen for removal and disposal of solids. The fineness or coarseness of the mesh of a screen may vary depending upon mud flow rate and the size of the solids to be removed.
Many screens used with shale shakers are flat or nearly flat (i.e. substantially two-dimensional). Other screens, due to corrugated, depressed, or raised surfaces are three-dimensional. U.S. Pat. Nos. 5,417,793; 5,417,858; and 5,417,859 disclose non-flat screens for use with shale shakers. These screens have a lower planar apertured plate with a multiplicity of spaced-apart apertures or openings therethrough. Undersides of troughs of undulating screening material are bonded to the apertured plate. Such screens present a variety of problems, deficiencies, and disadvantages, including: decreased flow area due to area occluded by solid parts of the apertured plate; necessity to either purchase relatively expensive apertured plate or provide for in-house perforating of a solid plate; plate weight increases wear on parts such as rubber screen supports or cushions and can inhibit required vibration; large plate surface area requires relatively large amount of bonding means for bonding screens to the plate; and a finished screen which is relatively heavy increases handling problems, hazards, and cost of shipping.
Vibrating screens have been employed for many years to separate particles in a wide array of industrial applications. One common application of vibrating screens is in drilling operations to separate particles suspended in drilling fluids. The screens are generally flat and are mounted generally horizontally on a vibrating mechanism or shaker that imparts either a rapidly reciprocating linear, elliptical or circular motion to the screen. Material from which particles are to be separated is poured onto a back end of the vibrating screen, usually from a pan mounted above the screen. The material generally flows toward the front end of the screen. Large particles are unable to move through the screen remaining on top of the screen and moving toward the front of the screen where they are collected. The smaller particles and fluid flows through the screen and collects in a pan beneath the screen.
A vibrating screen may be formed from one or more layers of wire mesh. Wire mesh is generally described with reference to the diameter of the wires from which it is woven, the number wires per unit length (called a mesh count) and the shape or size of the openings between wires. Wire mesh comes in various grades. “Market” grade mesh generally has wires of relative large diameter. “Mill” grade has comparatively smaller diameter wires and “bolting cloth” has the smallest diameter wire. The type of mesh chosen depends on the application. Smaller diameter wires have less surface and thus less drag, resulting in greater flow rates. Smaller diameter wires also result, for a given opening size, in a larger percentage of open area over the total area of the screen, thus allowing greater flow rates and increased capacity. However, screens of bolting cloth tears more easily than market or mill grade screens, especially when used in harsh conditions such as drilling and mining operations. The smaller diameter wires tend to have less tensile strength and break more easily, and the finer mesh also tends not to retain its shape well.
Most meshes suffer from what is termed as “near sized” particle blinding. During vibration, wires separate enough to allow particles of substantially the same size or slightly larger than the openings to fall between the wires and become wedged, thus “blinding” the openings of the screen and reducing capacity of the screen. If a particle becomes lodged when the wires are at a maximum distance apart, it is almost impossible to dislodge the particle. Sometimes, however, wires will subsequently separate further to release the lodged particle. Unfortunately, some wire mesh, especially bolting cloth, is tensioned. Tensioning restricts movement of the wires. Restricting movement assists in holding the shape of the wire mesh, keeping the size of the openings consistent to create a more consistent or finer “cutting point” and reducing abrasi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dual screen element having upper scalping screen adhered to... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dual screen element having upper scalping screen adhered to..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual screen element having upper scalping screen adhered to... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2591074

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.