Dual mode proximity and in-range smart card data transaction...

Registers – Coded record sensors – Particular sensor structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C235S492000

Reexamination Certificate

active

06202927

ABSTRACT:

FIELD OF THE INVENTION
The invention relates generally to a data transaction system for process monitoring and event tracking. In particular the invention relates to such a system for monitoring personnel who are obligated to perform operations in a specified sequence so as to ensure that act accordingly.
BACKGROUND OF THE INVENTION
Smart cards, or data transaction cards, for carrying out data transactions are in wide use and well known per se. A concise introduction to the nomenclature and principal features of smart cards, also called data to transaction cards, is found in a paper by Gilles Lisimaque, presented at the 27th International SAMPE Technical Conference, on Oct. 9-12, 1995.
The term “smart card” as used below refers to a data card with the geometrical dimensions of an ISO 7816 standard contact card: about 86×54×0.8 mm and having either a contact or contactless interface or a combined contact/contactless interface as described, for example, in our co-pending Israel Patent Application No. 119943 filed on Dec. 31, 1997.
Smart cards have historically been used to perform passive tasks only which are not time-related, mainly for identification, authentication, and data collection duties, by contact and/or contactless communication. However, there are many situations wherein it is necessary to perform different actions according to a sequence of time-related operations. For example, rather than merely condition a smart card's response on passive data stored therein as has been done so far, it would be advantageous to allow the smart card to respond to data as it is received in accordance with the received data.
However, current smart cards lack the autonomous processing and communication capability needed for controlling industrial processes, usually involving time and performance monitoring adaptable to various situations. Thus for smart cards to be considered for manufacturing tasks and to become cost effective, there is required an improvement in those features related to processing, transaction and response to sensors. In order that the smart card may remain compact, the enhanced processing facility must not unduly increase its power consumption and this has tended to militate against the use of smart cards for such applications.
U.S. Pat. No. 5,491,672 in the name of R. Ferris describes a system using RF tags to monitor a watchman's performance. Ferris discloses a system with the use of a portable interrogation time clock unit carried by a watchman for receiving a passive answer when coming in range of an RF tag or card located at a site to be visited. The unit carried by the watchman is bulky and employs radio frequency communication with relatively high power consumption. Consequently, such a system lacks the convenience and portability associated with smart cards. Furthermore, the task of the static RF tags or cards is entirely passive and the system is not designed to deliver a warning or a reminder if a required task is neglected.
Another attempt to create an advanced monitoring system is found in U.S. Pat. No. 5,682,142 to Loosmore et al., describing a network of fixed stations and movable tags communicating with each other. Loosmore does not provide a system of autonomous stations and smart cards but rather requires that the component devices are interconnected in a network formation. This allows mutual communication between all nodes in the network, both fixed and moving. It does not appear that such a system is constrained by low energy requirements which are less relevant to node tags than to smart cards. Furthermore, data transfer via wireless transceiver which is inherently power-consuming.
Although smart cards are inherently well suited for portable, low-power applications, known smart cards suffer from low range communication, usually in the order of only 30 to 50 cm. This is acceptable for passive systems wherein a moveable transponder is brought into close proximity with a fixed station as is typically the case when data in the smart card is to be read by the station. However, it militates against the use of smart cards for process monitoring where relatively long range communication between the station and transponder is required in the order of several meters.
SUMMARY OF THE INVENTION
It is therefore a principal object of the invention to provide a smart card having an extended operating range.
A further object of the invention is to exploit the extended range of such a smart card in a data transaction system allowing the central monitoring of events according to a sequence of time-related operations.
These objectives are realized in accordance with a broad aspect of the invention by means of a data transaction card comprising:
a semiconductor device coupled to an antenna coil for data communication with a remote antenna so as to receive a signal therefrom, and
an amplifier coupled to the antenna coil for amplifying said signal so as thereby to extend an operating range of the data transaction card.
According to a further aspect of the invention, there is provided a data transaction system, comprising a portable data transaction card, a triggering station for triggering the data transaction card from a “dormant” state to an “active” state or vice versa, and at least one device within an area served by the triggering station for producing a device signal indicative of an event associated with said device,
the data transaction card comprising:
a memory for storing a predetermined instruction set and for storing data indicative of said event,
a card triggering receiver for effecting inductive coupling with the triggering station so as to receive a triggering signal produced thereby upon passage into said area,
a processing unit coupled to the card triggering receiver and to the memory for operating in accordance with said predetermined instruction set in response to said event, and
a battery for supplying energy to components of the data transaction card.
“Short range” communication over a distance of up to 15 meters is achieved between the data transaction card and the triggering station. By such means, the data transaction card is not forced to come into immediate proximity with the triggering station to establish communication. Preferably, the data transaction card is not limited to one mode of communication but combines short range, proximity and contact communication to take advantage of the mode most appropriate to a given situation.
In order to minimize energy consumption thus saving battery power, the data transaction card remains dormant until triggered by the triggering station. If desired, the battery may be rechargeable so as to allow recharging either by inductive coupling communication or by contact. The data transaction card is programmed to respond to different events and store data which may subsequently be downloaded to a data logger or interrogating station, using either a conventional contact or contactless interface.
Preferably, at least two triggering stations are provided each comprising a triggering transceiver for effecting data transfer with the smart card by inductive coupling communication. The system may thus collect and store data from the triggering stations, discretely, when coming in proper range.
The smart card is preferably provided with time keeping abilities in order that data stored therein may be correlated to the time of a respective event. In the event of non-compliance with the predetermined requirements, a suitable warning may be given to the card owner.
The invention also contemplates an integrated system including send and receive stations for proximity inductive communication with the smart card, thus allowing data and instructions to be downloaded to the card and permitting the card to be interrogated.


REFERENCES:
patent: 4641374 (1987-02-01), Oyama
patent: 4792996 (1988-12-01), Oyama
patent: 5083013 (1992-01-01), Levionnais
patent: 5206495 (1993-04-01), Kroft
patent: 5212373 (1993-05-01), Fujioka et al.
patent: 5225667 (1993-07-01), Furuta et al.
patent: 5241160 (1993-08-01), Bas

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dual mode proximity and in-range smart card data transaction... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dual mode proximity and in-range smart card data transaction..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual mode proximity and in-range smart card data transaction... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2544286

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.