Drug – bio-affecting and body treating compositions – Inorganic active ingredient containing – Heavy metal or compound thereof
Reexamination Certificate
1999-12-22
2003-06-17
Page, Thurman K. (Department: 1615)
Drug, bio-affecting and body treating compositions
Inorganic active ingredient containing
Heavy metal or compound thereof
C424S600000, C424S617000, C424S422000, C424S078080, C424S078170, C427S002100, C427S002300, C604S265000
Reexamination Certificate
active
06579539
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to microbe resistant articles and compositions that are for internal or external use with humans or animals, and methods for making these articles and compositions.
BACKGROUND OF THE INVENTION
Articles such as medical devices may be classified according to their method of use, i.e. as those used for total implants or those used as access devices. The medical access devices may be further classified as those that exit at a bodily orifice, such as a Foley catheter, and those that exit transcutaneously, such as venous catheters. Medical devices such as catheters, which come into contact with bodily fluids and organs, are often left in place for prolonged periods of time. Several problems are encountered from the use of indwelling catheters such as the introduction of bacteria during insertion or implantation or upon long term exposure of the catheter exit site to the environment. In addition, long-term catheter use often develops biofilm on the catheter surface reducing patient comfort and contributing to the possibility of infection.
Attempts have been made to prevent microbial infection related to catheter use by bonding an antibacterial agent to a catheter. For example, U.S. Pat. No. 5,476,509 describes a catheter having a polymeric coating that has an antibiotic agent covalently or ionically bound thereto. Similarly, U.S. Pat. No. 5,798,115 describes a catheter having a polymer coating that has an antibiotic covalently bonded to the polymer backbone. While these catheters may kill bacteria that are kept in contact with it for prolonged periods of time, the catheter is not effective at killing bacteria that are introduced into the body during insertion of the catheter since the antibiotic is attached to the catheter and the bacteria are able to diffuse away from the catheter. A different type of catheter is described in U.S. Pat. No. 5,019,096. In this patent, a catheter having a matrix-forming polymer in which an antimicrobial agent is impregnated, is described. Since the antibiotic is not covalently or ionically bound to the polymer, it is able to diffuse away from the catheter. While this catheter may show some effectiveness against bacteria introduced during insertion of the catheter, the long term antibacterial effectiveness is limited as the antibacterial agent diffuses out of the polymer coating in a relatively short period of time. In addition, short-term, incomplete killing of bacteria, such as that resulting from impregnated catheters, has been shown to encourage bacterial resistance.
It is known that hydrophilic coatings with low friction (coefficient of friction of 0.3 or less) are useful for a variety of medical devices such as catheters, catheter introducers, guide-wires and the like. When low friction devices are used, the devices, upon introduction into the body, slide easily within the arteries, veins, and other body orifices and passageways. In some cases, the material of the catheter or medical device is formed of a material having good antifriction properties such as poly(tetrafluoroethylene) or other plastics which tend to avoid abrasion with the body. However, in many cases the selection of material does not provide the anti-slip properties desired in conjunction with other desirable properties of the particular medical device. In other cases, the desired adherence of a lubricious coating to a particular substrate is not achieved. Thus, there exists a need for long-term, microbe resistant articles that do not enhance the likelihood of creating resistant infections and which have lubricious and durable surfaces.
SUMMARY OF THE INVENTION
This invention provides durable and lubricious compositions and articles that have a relatively potent short-term microbial resistance in addition to a sustained long-term microbial resistance. In addition, this invention provides methods for making microbially resistant compositions and articles wherein the compositions and articles have a relatively potent short-term microbial resistance and a sustained long-term microbial resistance and wherein the articles and compositions have a durable and lubricious surface.
In accordance with an embodiment of the invention, a composition is provided that is a multi-layer coating. The coating comprises a layer of metallic silver overlaid with a polymer, preferably a hydrogel, which contains an antimicrobial agent. In accordance with an additional embodiment of the invention, an article having a layer of metallic silver applied thereto which is overlaid with a hydrogel containing an antimicrobial agent is provided. Preferred articles for use according to the invention are medical articles. In particular, medical articles such as catheters are preferred. These articles have affixed to their surfaces a metallic silver layer which is covered by a hydrogel containing an antimicrobial agent. In accordance with a further embodiment of the invention, methods for producing the articles and the compositions of the invention are provided. The method comprises:
a) providing a layer of metallic silver
b) preparing a coating solution by dissolving a polymer, preferably a hydrogel, or the components to produce a polymer or hydrogel in one or more solvents
c) incorporating at least one antimicrobial agent into the coating solution; and
d) coating the metallic silver layer with the coating solution containing the antimicrobial agent.
DETAILED DESCRIPTION OF THE INVENTION
Articles that embody the present invention generally can be any article that contacts patients or is used in health care. The articles may be for use either internally or externally, and include, for example, catheters, tubes, shunts, condoms, medical gloves, implants, sutures, grafts and the like. The articles can be made from a variety of natural or synthetic materials, such as, for example, latex, polystyrene, polyester, polyvinylchloride, polyurethane, ABS polymers, ceramics such as aluminum oxide, glass, polyamide, polimide, polycarbonate, synthetic rubber, stainless steel, silicone and polypropylene.
The metallic silver layer is formed by methods known in the art such as wet deposition, electroplating, sputter coating and vacuum deposition. A preferred method of forming the metallic silver layer is wet deposition as described in U.S. Pat. No. 5,395,651. The entire disclosure of U.S. Pat. No. 5,395,651 is incorporated herein by reference. Briefly, metallic silver is deposited upon the surface of an article using a multi-step wet deposition process. The surface is cleaned, and then activated in an aqueous solution containing tin. The silver is deposited from an aqueous solution of a silver-containing salt, a reduction agent that reduces the salt to form the metallic silver, and a deposition control agent that prevents the silver from nucleating throughout the solution. After the article is coated, the coating is stabilized as described in U.S. Pat. No. 5,395,651. The metallic silver layer can be between about 2 angstroms and about 10 microns. A preferred thickness is between about 2 angstroms and about 2,000 angstroms. Alternatively, the amount of silver deposited is determined by weight per unit area. The amount of silver deposited can be from about 0.1 &mgr;g/cm
2
to about 100 &mgr;g/cm
2
. A preferred about of silver deposited per unit area is from about 0.5 &mgr;g/cm
2
to about 20 &mgr;g/cm
2
.
Nearly any hydrophilic polymer can be used according to this invention. For example, a polyurethane coating which takes up about 10% by weight of water or less can be used. Polymer coatings which are water soluble can also be used. For example, polyvinylpyrrolidone (PVP), which dissolves off when wet, can be used. However, polymer coatings known as hydrogels are preferred. Hydrogels for use according to the invention are those polymers known in the art that exhibit about 25% by weight to about 500% by weight water uptake. Preferably, the hydrogels for use according to this invention exhibit about 50% by weight to about 200% by weight water uptake, and, more preferably, from about
Lawson Glenn
Terry Richard
C. R. Bard Inc.
Di Nola-Baron Liliana
Morgan & Finnegan , LLP
Page Thurman K.
LandOfFree
Dual mode antimicrobial compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Dual mode antimicrobial compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual mode antimicrobial compositions will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3106232