Dual intensity peening and aluminum-bronze wear coating...

Fluid reaction surfaces (i.e. – impellers) – Specific working member mount – Blade received in well or slot

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C416S24100B

Reexamination Certificate

active

06267558

ABSTRACT:

BACKGROUND OF THE NVENTION
1. Field of the Invention
This invention relates generally to reduction in fretting between blades and disks in turbine engines, and specifically to reduction in fretting between titanium and titanium alloy compressor blade dovetails and titanium and titanium alloy compressor disks in the high pressure compressor portions of turbine engines.
2. Discussion of the Prior Art
Titanium and titanium alloys are used in the portion of aircraft engines to the fore or front portion of the engine because of their excellent mechanical properties, such as excellent strength, low density and favorable mechanical properties. However, the blades and the disks are usually separate parts that are fretted together, except in certain situations in which a blisk is used. The one disadvantage of separate titanium blades and titanium disks is that they rub against each other at the blade-to-disk attachment contact surfaces.
When two pieces of metallic material rub or slide against each other, frictional forces between the parts may result in damage to materials through the generation of heat, or through a variety of fatigue processes generally termed fretting or galling.
In certain aircraft engine designs, a titanium or titanium alloy compressor disk, also referred to as a compressor rotor, has an array of dovetail slots arranged around its outer periphery The compressor blades, also made of titanium or titanium alloy have corresponding dovetail bases to allow mate-up of the blade dovetail bases with the respective rotor dovetail slots so that the blade is retained within the dovetail slots. When the rotor is operating at normal operating speeds, centrifugal force causes the blades to move radially outward. The sides of the blade dovetail slide against the sides of the rotor slots.
Various approaches to solve the problem have been attempted in the region to reduce the damage due to fretting, with limited success. Copper-nickel-indium coating has been applied to the blade dovetail. While the coating has lowered the coefficient of friction between the blade dovetail and rotor dovetail slot, the reduction is not sufficient to eliminate fretting. Furthermore, once the coating wears off, in a few thousand cycles of engine operation, fretting once again becomes a problem.
Another solution to the problem has been to apply a dry film lubricant to the region between the blade dovetail and the rotor dovetail slot, such as is described in U.S. Pat. No. 5,356,545 assigned to the assignee of the present invention. While this invention has delayed the onset of fretting, it has not solved the problem. The dry film lubricant is displaced after about 2000 cycles or less of engine operation, and the normal processes leading to fretting occur after its loss.
Another solution has been to modify the area of highest stresses between the rotor dovetail slot and blade dovetail by undercutting the slot dovetail in the disk to remove disk material in the area where surface peak stressing (edge of contact) would otherwise occur, such as is described in U.S. Pat. No. 5,141,401, assigned to the assignee of the present invention. Once again, this solution has had varying amounts of success in reducing the time to crack initiation resulting from low cycle fatigue in that it is effective only while the wear does not approach the depth of the undercut, which in turn is limited by the dovetail size.
Despite all of the attempts to eliminate fretting, cracking resulting from such fretting continues to occur in high pressure compressor blade dovetails. Cracking has been observed on stage 3, 4 and 5 high pressure compressor blade dovetails at the upper edge of contact between the blades and the disk. The cracking occurs in engines that have experienced at least 4000 engine cycles, which corresponds to approximately 12,000 hours of engine operation. The problem to be solved is one of eliminating cracks induced by the forces generated between the dovetail of the blade and the dovetail slot of the rotor disk, thereby extending the operating life of the blades and hence the compressor assemblies.
What is needed is a new approach to reduce the fretting while simultaneously neutralizing degradation, thereby eliminating the onset of cracking so that engine life is not impacted by compressor problems in this area.
SUMMARY OF THE INVENTION
The present invention provides a novel approach which combines a reduction in damage from fretting with the ability to also better resist fretting as a result of contact between the blade dovetail and the rotor dovetail slot. Furthermore, the present invention may be used in conjunction with existing approaches that extend the time until the onset of fretting, such as dry film lubricants and mechanical modifications to reduce regions of stress concentrations.
Specifically, the present invention utilizes a combination of a metallurgical solution, an application of aluminum-bronze coating in conjunction with a mechanical solution application of a dual intensity peening treatment.
The blade dovetail is first subjected to a dual intensity peening treatment. This involves a first peening operation of high intensity using large peening media that provides a compressive stress to the required depth. This first peening operation is followed by a second conventional peening operation of lower intensity using conventional peening media that provides both additional compressive stresses closer to the dovetail surface and a smoother surface.
After the part has undergone the dual intensity peeing operation, it is then coated with an aluminum bronze coating to a preselected thickness. The aluminum bronze coating reduces the coefficient of friction between the disk and the blade. The lower coefficient of friction results in lower forces between the blade and the dovetail which in turn translates into a longer life. The blade can then be installed in the rotor dovetail using commonly used installation practices. Typically, this involves use of a dry film lubricant that further assists in reducing friction.
The advantages of the present invention is that it can be used in combination with other standard installation practices utilized to extend the life of compressor blades and also to increase the mean time between required inspections.
Another advantage is that the surface modifications to the compressor blades do not require significant machining operations of the blade or redesign of the blade or rotor assembly. The aluminum bronze dovetail coating provides a lower friction coefficient while the dual intensity peening provides an effective residual compressive stress.
Finally, the combination of dual intensity peening and aluminum bronze coating improves the durability of the interface between the blade and the disk to reduce or eliminate blade dovetail failures at the edge of contact between the blade and the rotor dovetail slot within the required life without removal from the engine.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.


REFERENCES:
patent: 5141401 (1992-08-01), Juenger et al.
patent: 5160243 (1992-11-01), Herzner et al.
patent: 5356545 (1994-10-01), Wayte
patent: 5476363 (1995-12-01), Freling et al.
patent: 5562999 (1996-10-01), Grunke et al.
patent: 5620307 (1997-04-01), Mannava et al.
patent: 5771729 (1998-06-01), Bailey et al.
patent: 6089828 (2000-07-01), Hollis et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dual intensity peening and aluminum-bronze wear coating... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dual intensity peening and aluminum-bronze wear coating..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual intensity peening and aluminum-bronze wear coating... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2567973

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.