Abrading – Flexible-member tool – per se – Interrupted or composite work face
Reexamination Certificate
2000-11-15
2002-06-25
Eley, Timothy V. (Department: 3723)
Abrading
Flexible-member tool, per se
Interrupted or composite work face
C451S533000, C451S299000, C451S065000
Reexamination Certificate
active
06409587
ABSTRACT:
FIELD OF THE INVENTION
The present invention generally relates to a dual-hardness polishing pad for linear polishing and a method for fabrication and more particularly, relates to a dual-hardness polishing pad for use in a linear chemical mechanical polishing process consisting of a body portion formed of a hard material and a cover portion formed of a soft material, and a method for fabrication.
BACKGROUND OF THE INVENTION
In the fabrication of semiconductor devices from a silicon wafer, a variety of semiconductor processing equipment and tools are utilized. One of these processing tools is used for polishing thin, flat semiconductor wafers to obtain a planarized surface. A planarized surface is highly desirable on a shadow trench isolation (STI) layer, on an inter-layer dielectric (ILD) or on an inter-metal dielectric (IMD) layer which are frequently used in memory devices. The planarization process is important since it enables the use of a high resolution lithographic process to fabricate the next level circuit. The accuracy of a high resolution lithographic process can be achieved only when the process is carried out on a substantially flat surface. The planarization process is therefore an important processing step in the fabrication of semiconductor devices.
A global planarization process can be carried out by a technique known as chemical mechanical polishing or CMP. The process has been widely used on ILD or IMD layers in fabricating modern semiconductor devices. A CMP process is performed by using a rotating platen in combination with a pneumatically actuated polishing head. The process is used primarily for polishing the front surface or the device surface of a semiconductor wafer for achieving planarization and for preparation of the next level processing. A wafer is frequently planarized one or more times during a fabrication process in order for the top surface of the wafer to be as flat as possible. A wafer can be polished in a CMP apparatus by being placed on a carrier and pressed face down on a polishing pad covered with a slurry of colloidal silica or aluminum.
A polishing pad used on a rotating platen is typically constructed in two layers overlying a platen with a resilient layer as an outer layer of the pad. The layers are typically made of a polymeric material such as polyurethane and may include a filler for controlling the dimensional stability of the layers. A polishing pad is typically made several times the diameter of a wafer in a conventional rotary CMP, while the wafer is kept off-center on the pad in order to prevent polishing a non-planar surface onto the wafer. The wafer itself is also rotated during the polishing process to prevent polishing a tapered profile onto the wafer surface. The axis or rotation of the wafer and the axis of rotation of the pad are deliberately not collinear, however, the two axes must be parallel. It is known that uniformity in wafer polishing by a CMP process is a function of pressure, velocity and concentration of the slurry used.
A CMP process is frequently used in the planarization of an ILD or IMD layer on a semiconductor device. Such layers are typically formed of a dielectric material. A most popular dielectric material for such usage is silicon oxide. In a process for polishing a dielectric layer, the goal is to remove typography and yet maintain good uniformity across the entire wafer. The amount of the dielectric material removed is normally between about 5000 Å and about 10,000 Å. The uniformity requirement for ILD or IMD polishing is very stringent since non-uniform dielectric films lead to poor lithography and resulting window etching or plug formation difficulties. The CMP process has also been applied to polishing metals, for instance, in tungsten plug formation and in embedded structures. A metal polishing process involves a polishing chemistry that is significantly different than that required for oxide polishing.
The important component needed in a CMP process is an automated rotating polishing platen and a wafer holder, which both exert a pressure on the wafer and rotate the wafer independently of the rotation of the platen. The polishing or the removal of surface layers is accomplished by a polishing slurry consisting mainly of colloidal silica suspended in deionized water or KOH solution. The slurry is frequently fed by an automatic slurry feeding system in order to ensure the uniform wetting of the polishing pad and the proper delivery and recovery of the slurry. For a high volume wafer fabrication process, automated wafer loading/unloading and a cassette handler are also included in a CMP apparatus.
As the name implies, a CMP process executes a microscopic action of polishing by both chemical and mechanical means. While the exact mechanism for material removal of an oxide layer is not known, it is hypothesized that the surface layer of silicon oxide is removed by a series of chemical reactions which involve the formation of hydrogen bonds with the oxide surface of both the wafer and the slurry particles in a hydrogenation reaction; the formation of hydrogen bonds between the wafer and the slurry; the formation of molecular bonds between the wafer and the slurry; and finally, the breaking of the oxide bond with the wafer or the slurry surface when the slurry particle moves away from the wafer surface. It is generally recognized that the CMP polishing process is not a mechanical abrasion process of slurry against a wafer surface.
While the CMP process provides a number of advantages over the traditional mechanical abrasion type polishing process, a serious drawback for the CMP process is the difficulty in controlling polishing rates and different locations on a wafer surface. Since the polishing rate applied to a wafer surface is generally proportional to the relative velocity of the polishing pad, the polishing rate at a specific point on the wafer surface depends on the distance from the axis of rotation. In other words, the polishing rate obtained at the edge portion of the wafer that is closest to the rotational axis of the polishing pad is less than the polishing rate obtained at the opposite edge of the wafer. Even though this is compensated by rotating the wafer surface during the polishing process such that a uniform average polishing rate can be obtained, the wafer surface, in general, is exposed to a variable polishing rate during the CMP process.
More recently, a new chemical mechanical polishing method has been developed in which the polishing pad is not moved in a rotational manner but instead, in a linear manner. It is therefor named as a linear chemical mechanical polishing process in which a polishing pad is moved in a linear manner in relation to a rotating wafer surface. The linear polishing method affords a uniform polishing rate across a wafer surface throughout a planarization process for uniformly removing a film player of the surface of a wafer. One added advantage of the linear CMP system is the simpler construction of the apparatus and therefore not only reducing the cost of the apparatus but also reduces the floor space required in a clean room environment.
A typical linear CMP apparatus
10
is shown in
FIGS. 1A and 1B
. The linear CMP apparatus
10
is utilized for polishing a semiconductor wafer
24
, i.e. a silicon wafer for removing a film layer of either an insulating material or a wafer from the wafer surface. For instance, the film layer to be removed may include insulating materials such as silicon oxide, silicon nitrite or spin-on-glass material or a metal layer such as aluminum, copper or tungsten. Various other materials such as metal alloys or semi-conducting materials such as polysilicon may also be removed.
As shown in
FIGS. 1A and 1B
, the wafer
24
is mounted on a rotating platform, or wafer holder
18
which rotates at a pre-determined speed. The major difference between the linear polisher
10
and a conventional CMP is that a continuous, or endless belt
12
is utilized instead of a rotating polishing pad. The belt
12
moves in a linear
Chen Ying-Ho
Chiou Wen-Chih
Jang Syun-Ming
Shih Tsu
Berry Jr. Willie
Eley Timothy V.
Taiwan Semiconductor Manufacturing Co. Ltd
Tung & Associates
LandOfFree
Dual-hardness polishing pad for linear polisher and method... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Dual-hardness polishing pad for linear polisher and method..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual-hardness polishing pad for linear polisher and method... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2922373