Dynamic magnetic information storage or retrieval – Head – Magnetoresistive reproducing head
Reexamination Certificate
1998-10-13
2001-08-21
Klimowicz, William (Department: 2652)
Dynamic magnetic information storage or retrieval
Head
Magnetoresistive reproducing head
Reexamination Certificate
active
06278594
ABSTRACT:
TECHNICAL FIELD
The present invention relates to stabilizing active layers in dual element magnetoresistive read heads.
BACKGROUND ART
Information is written onto a magnetic tape by magnetizing tape elements. These magnetized tape elements produce a magnetic field which can be detected and converted to an electrical signal by a read head. A common type of read head for carrying out this conversion is the magnetoresistive (MR) read head.
A simple MR head consists of a thin film of magnetoresistive material, such as Permalloy, between two insulating layers. When the MR layer is formed, a magnetic field is typically applied in a direction parallel to the plane of the thin layer. Thus, the MR layer exhibits a uniaxial anisotropy with an easy-axis of magnetization parallel to the direction of the applied field. If an external magnetic field, such as from a magnetic tape, is applied normal to the easy-axis, the magnetization direction of the MR layer will rotate away from the easy-axis and towards the direction of the applied magnetic field. This magnetization rotation causes a change in resistance in the MR layer. When no external field is applied, the resistance is greatest. The resistance decreases with increasing applied field. For practical geometries of the MR layer, resistance as a function of applied field traces a bell-shaped curve. The MR head is often biased with an applied current such that a zero magnitude applied field results in a resistance near an inflection point on the resistance curve. Thus, small changes about a zero magnitude applied external field result in nearly linear changes in resistance.
To accommodate increasing densities of data stored on magnetic tape, the geometries of read heads continue to shrink. One difficulty encountered is the increasing affect of Barkhausen noise. As the width of the MR layer is narrowed, the MR layer tends to split into magnetic domains, resulting in demagnetization. In the presence of an increasing externally applied field, the domain walls make sudden movements, causing jumps in the output signal. Two methods exist to reduce or eliminate Barkhausen noise. The first is to increase the effective length of the MR layer. Lengthening the MR reduces demagnetization at the ends and, hence, results in a greater retention of a single magnetic domain. The main difficulty with this technique is that the resulting increase in read head size is contrary to the need for increased data density on magnetic tapes. The second technique uses a small magnetic field in the direction of the easy-axis to induce a single domain in the MR layer. An implementation of this method uses permanent magnetics placed over the ends of the MR layer. These magnets strongly pin the domains of the MR layer under the magnets and create a weak longitudinal magnetic field in the MR layer between the covered ends. Difficulties with this implementation include complex geometries and additional processing steps required to implement the additional permanent magnetic.
In addition to Barkhausen noise, cross-sensitivities to other parameters, such as temperature, can affect the performance of the MR head. A dual active element MR read head minimizes cross-sensitivities. The dual active element MR head includes two MR layers in parallel separated by an insulating layer. Two additional insulating layers, one on each end of the structure, insulate the MR layers from surrounding materials. The two MR layers are connected in parallel to a source current such that current flows in the same direction through both layers. The fringe field produced by current flowing through each MR layer biases the adjacent layer. Hence, an externally applied magnetic field produces an increase in resistance of one MR layer and a corresponding decrease in resistance of the other MR layer. A differential amplifier with an input connected to each MR layer converts these changes in resistance to an output voltage. Environmental changes to both MR layers, such as changes in temperature, appear as common mode inputs to the differential amplifier and, hence, are rejected.
What is needed is a dual active element MR read head with reduced Barkhausen noise susceptibility. The read head should be easy to produce, have simple geometry, and not require additional processing steps over prior dual active element MR read heads.
DISCLOSURE OF THE INVENTION
It is an object of the present invention to provide a dual active element magnetoresistive read head with reduced Barkhausen noise.
Another object of the present invention is to provide a read head with reduced Barkhausen noise that is easy to produce.
Still another object of the present invention is to provide a read head with reduced Barkhausen noise and with a simple geometry.
Yet another object of the present invention is to provide a dual active element magnetoresistive read head with reduced Barkhausen noise that does not require additional production steps over prior read heads.
In carrying out the above objects and other objects and features of the present invention, a dual active element magnetoresistive read head for magnetic tapes is provided. The MR read head includes a first insulator layer. A first active magnetoresistive layer is on the first layer. A second insulator layer is on the first active magnetoresistive layer. A second active magnetoresistive layer is on the second insulator layer. The second active magnetoresistive layer is magnetostatically coupled to the first active magnetoresistive layer. A third insulator layer is on the second active magnetoresistive layer. At least one insulator layer is a biasing layer comprised of an electrically nonconductive antiferromagnetic material.
In an embodiment of the present invention, the electrically non-conductive antiferromagnetic magnetic material is nickel oxide.
In another set of embodiments according to the present invention, the at least one biasing layer is one of either the second insulator layer, the first insulator layer and the third insulator layer, the second insulator layer and the third insulator layer, or the first insulator layer and the second insulator layer.
In still another embodiment of the present invention, each active magnetoresistive layer is adjacent to at least one biasing layer. Each active magnetoresistive layer further has a thickness allowing each adjacent biasing layer to establish a weak field across the thickness of the active magnetoresistive layer. The weak field produces magnetization that has the same direction throughout the active magnetoresistive layer in the absence of an externally applied field.
In yet another set of embodiments according to the present invention, the weak fields in the magnetoresistive layers are either parallel, antiparallel, or normal to each other.
In a further embodiment according to the present invention wherein two insulator layers on either side of a particular magnetoresistive layer are biasing layers, the read head includes a separation layer between one of the two biasing insulator layers and the particular magnetoresistive layer. The separation layer breaks the exchange bias from the one insulator layer to the particular magnetoresistive layer. In a refinement, the separation layer comprises at least one of titanium and tantalum.
A magnetoresistive read head assembly for sensing information recorded on a magnetic tape surface is also provided. The read head assembly includes a first insulator layer, a first active magnetoresistive layer on the first insulator layer, a second insulator layer on the first active magnetoresistive layer, a second active magnetoresistive layer on the second insulator layer, and a third insulator layer on the second active magnetoresistive layer. At least one insulator layer is comprised of an electrically non-conductive antiferromagnetic magnetic material. The read head also includes means for supplying current through the first active magnetoresistive layer and the second active magnetoresistive layer. The read head further includes means for detecting the relative change in resistance betw
Chesnutt Robert B.
Dee Richard H.
Engel Bradley N.
Brooks & Kushman P.C.
Chen Tianjie
Klimowicz William
Storage Technology Corporation
LandOfFree
Dual element magnetoresistive read head with integral... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Dual element magnetoresistive read head with integral..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual element magnetoresistive read head with integral... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2470458