Electric lamp and discharge devices: systems – Combined load device or load device temperature modifying... – Discharge device load
Reexamination Certificate
2000-12-27
2002-10-01
Vu, David (Department: 2821)
Electric lamp and discharge devices: systems
Combined load device or load device temperature modifying...
Discharge device load
C315S060000, C313S493000
Reexamination Certificate
active
06459204
ABSTRACT:
FIELD OF INVENTION
The present invention relates to electric discharge lamps having an ionizable gas discharge path with a luminescent material coating the walls of the discharge path, and more particularly, to a plurality of fluorescent electric discharge lamp elements supported on a base containing an integral self-contained electronic ballasting means, comprising a replaceable 3-way compact fluorescent lamp.
BACKGROUND OF THE INVENTION
Because of the demand for increased energy conservation due to the increased replacement and operating costs, researchers and innovators have been attempting to develop compact electric discharge lamps, such a fluorescent lamps, as screw-in replacements for the standard incandescent bulb. Up to now, these attempts have been hampered by lagging technologies that made large bulky inefficient assemblies that were expensive to manufacture and quite cumbersome at best.
Electromagnetic ballasts, ones which were the predecessors to the electronic ballasts, had the disadvantage of being heavy because of the metal core, failed when overheated because of insufficient cooling and heat-sinking, and were excessively large when compared to a compact bulb itself.
If one were to consider the development of a 3-way triple biaxial fluorescent lamp using electromagnetic ballasts, a rather unwieldy assembly would evolve. It could become necessary to have three electromagnetic ballasts, each correctly sized for each of the three biaxial lamp elements.
Three-way incandescent bulbs are capable of supplying three levels of illumination by controlling the switching sequence that applies power to the two filaments. The common connection between the two filaments connects to the shell of a 3-contact medium or mogul base. The low power filament connects to the ring contact, which lies intermediate the central contact and the shell; and the medium power filament connects to the center contact of the base.
As a replacement for a standard 3-way incandescent bulb having a 3-contact medium base, the switching for the incandescent filaments is sequenced such that the first switch position is the “off” position. The second switch position, “low,” connects the first lamp filament to the applied power line; the third switch position, “medium,” connects the second lamp filament to the applied power line; and the fourth switch position, “high,” connects both the first and second lamp filaments together in parallel, to the applied power line.
U.S. Pat. No. 5,831,395, granted Nov. 3, 1998, to G. W. Mortimer, et al., discloses an adapter having a control circuit and ballasting means that controls the light output of a gas discharge lamp in response to switches that are external to the ballast. Three levels of light output with single or multiple lamps are provided. In one embodiment, it can be mounted in a standard three-way socket for incandescent lamps.
In the event the lamp voltage requirement is too high, Mortimer further teaches that a voltage doubling rectifier circuit for the electronic ballast is needed for optimal operating efficiency. The present invention obviates the need for a voltage doubling rectifier circuit by providing an improved fluorescent lamp starting means.
U.S. Pat. No. 5,612,597, granted Mar. 18, 1997, to P. Wood, discloses an oscillating driver circuit with power factor correction and an electronic lamp ballast employing the same and driver method.
Wood further teaches of a basic prior art electronic ballast that consists of L-C series resonant circuits with the lamps connected across one of the reactances. He also teaches that because fluorescent lamps do not require high striking voltages, a Q of two or three is sufficient to produce a “flat” Q curve.
In the present in invention, a novel high voltage starting circuit that optimizes the serially connected L-C circuit for optimum transient response, as opposed to the prior art L-C series resonant response is used.
U.S. Pat. No. 5,424,610, granted Jun. 13, 1995, to B. A. Pelton, discloses an outboard ballast that allows a compact fluorescent light bulb and its associated ballast to be positioned within a standard table lamp having a standard-size harp.
Pelton teaches of a table lamp configuration using a compact fluorescent lamp (without having an internal ballast), screwed into a lamp socket, which supports a lamp harp, to which an external ballast is mounted. The present invention relates to a compact 3-way fluorescent lamp, having a self-contained ballasting means, to be used as a replacement for a 3-way incandescent bulb.
U.S. Pat. No. 5,309,062, granted May 3, 1994, to R. A. Perkins, discloses a compact low-pressure gas discharge lamp assembly having a base and a plurality of low-pressure gas discharge light generating elements that is capable of being individually energized. An external ballast circuit assembly is provided to supply electrical energy to a variable number of low-pressure gas discharge elements. The output of the ballast connects to a three position switch, where in the first position connects to a single element; in the second position, to two elements connected in parallel; and in the third position, to all three elements. The operating frequency of the ballast varies as a function of the number of light-generating elements connected by the switch to the ballast circuit.
Perkins teaches of a compact fluorescent lamp arrangement, having an externally located electronic ballast, electrically sized to the maximum combined wattage of the three lamp elements combined. In the “medium” connection, two lamp elements are operated in parallel. The present invention uses three biaxially arranged tubes, symmetrically arranged and mounted on a single base, each tube spaced 120 degrees apart, where two of the tubes are joined and bonded to form a single double biaxial tube, which comprises two tube elements essentially connected serially.
U.S. Pat. No. 4,958,102, granted Sep. 18, 1990, to W. E. Wilson, et al., discloses a three-way lamp having two orthogonally mounted, U-shaped gas discharge light tubes, one larger than the other, mounted in the same housing; having three terminals arranged in the same configuration as a three-way incandescent lamp.
Wilson, et al., teaches of a three-way gas discharge lamp, having magnetic ballasts, as opposed to having electronic ballasts integrated into the housing structure. A lamp of this type could have been manufactured only by extremely complex manufacturing processes.
U.S. Pat. No. 4,853,591, granted Aug. 1, 1989, to L. Klein, et al., discloses a gas discharge vessel comprising at least two U-shaped units having two longitudinal leg portions extending parallel to each other and a cross element or base portion of the U, connecting the leg portions to the base of the U. To facilitate lamp starting, an auxiliary electrode is pinch sealed adjacent the cross connection and coupled by an impedance to the “hot” current carrying electrode.
In the present invention, the need for an auxiliary electrode as required by Klein, is obviated by the introduction of a novel high voltage starting circuit that optimizes the serially connected L-C circuit for optimum transient response as opposed to the prior art optimization of the L-C series resonant response.
U.S. Pat. No. 4,748,368, granted May 31, 1988, to W. E. Wilson, et al., discloses a three-way lamp having two orthogonally mounted, U-shaped gas discharge light tubes, one larger than the other, mounted in the same light-transmitting bulb; having three terminals arranged in the same configuration as a three-way incandescent lamp.
Wilson, et al., further teaches of a gas discharge lamp for use as a replacement for an incandescent bulb, where two U-shaped gas discharge tubes, one larger than the other, are mounted orthogonally on the same housing. It is further taught the use of magnetic ballasts, which when operated at 60 Hertz, become unduly large and operate at substantially higher than ambient temperatures. The present invention uses three biaxially arranged tubes, symmetrically arranged and mounted on a single base,
Lee Wilson
Taddeo Joseph H.
Technical Consumer Products, Inc.
Vu David
LandOfFree
Dual-element 3-way compact fluorescent lamp does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Dual-element 3-way compact fluorescent lamp, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual-element 3-way compact fluorescent lamp will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2983713