Dual dispense container having cloverleaf orifice

Dispensing – Collapsible wall-type container – Plural container and/or compartment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C222S183000

Reexamination Certificate

active

06347726

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to dual dispense containers comprised of an outer container and an inner container for separately packaging two products and dispensing them as one stream from the dual dispense container orifice. More particularly, this invention is directed to a dual dispense container whose orifice is generally configured as a cloverleaf.
2. Description of Related Art
Dual dispense containers are known. They are used to package products that are intended to be kept separate in the package and not brought into contact or mixed until after they are dispensed from the orifice of the tube. Examples of such containers are collapsible dual dispense tubes. Examples of such products are dentifrices comprised of two products that have different colors and are to be dispensed with a striped appearance, and dentifrices comprised of a peroxide gel product and sodium bicarbonate paste product that chemically react with each other and are to be mixed after dispensing.
Products packaged in a dual dispense containers are intended to be dispensed in a desired ratio for better appearance in the case of striped products, and for maximum effect upon mixing and/or during use, in the case of reactive products. For the latter, it is usually desired that there be as much inter-product surface contact area as possible upon dispensing to maximize mixing during use.
Heretofore, dual dispense containers with an inner tube neck and body disposed within an outer tube neck and body, have not been suitable for dispensing two products having similar flow characteristics in the same or substantially the same volumes, i.e., in substantially a 1:1 dispense ratio. The problem has been that the inner tube dispense orifice for one product and the outer tube dispense orifice for the other product have had different dispense areas and flow resistances, and the flow channels for the passage of the products through the necks to their orifices have had different product flow surface contact areas and flow resistances. Thus, the two products with similar flow characteristics experience different pressure drops as they flow to and are dispensed from the dual dispense orifice. Accordingly, the products are dispensed in different volumes.
Prior dual dispense containers may be rendered generally suitable for dispensing products with dissimilar flow characteristics at times in substantially equal volumes by properly matching the respective products and their dissimilar flow characteristics with the dissimilar flow resistances of the respective inner and outer containers' flow channels and orifices. Usually, the product with the higher viscosity (thicker, less free-flowing) is packaged in the container having the flow path and orifice with relatively less surface contact area and less flow resistance, and the product with the lower viscosity is packaged in the container with relatively more surface contact area and flow resistance. Typically, the higher viscosity product has been contained in the inner tube because it has a more direct path and less flow resistance to the inner tube orifice, and the lower viscosity product has been contained in the outer tube because it has a tortuous path to and greater flow resistance to the outer tube orifice.
Examples of these prior dual dispense containers are disclosed in U.S. Pat. No. 2,939,610 to Castelli et al, and U.S. Pat. No. 1,699,532 to Hopkins. The Castelli et al patent discloses, in
FIGS. 1-8
, a collapsible dual dispense tube having a side-by-side dispense orifice. The inner tube neck and orifice are D-shaped and the arcuate surface of the neck engages the annular outer tube neck. The orifice for the product contained in the inner tube is within the “D” of the neck and is smaller than the orifice for the product contained in the outer tube. The product with the higher viscosity is contained in the inner tube and the product with the lower viscosity is contained in the outer tube. Because the D-shaped inner tube neck engages more than half of the outer tube bore, most of the product in the outer tube must undergo significantly greater flow resistance because it must travel a circuitous path from one side of the tube to the other to exit from only one side of the dual tube orifice. Thus, this tube would not be suitable for dispensing products with the same or similar flow characteristics in equal or substantially equal volumes. The D-shaped side-by-side orifice provides a dispense stream with product-to-product contact along one surface, and thus provides minimal opportunity for product mixing. The Castelli et al patent also discloses, in
FIGS. 9 and 10
, a collapsible dual dispense tube having what is sometimes referred to as a sandwich-type orifice, formed by an annular outer tube throat that engages the end walls of a rectangular inner tube orifice and neck. The sandwich orifice has two opposed, small hemi-spherical outer tube orifice sections, one to either side of a large rectangular inner tube orifice. Although this dual tube sandwich orifice and neck design is an improvement over the D-shaped design because it provides two opposed orifices for the outer tube product, the design still provides significantly greater surface area and flow resistance for the lower viscosity outer tube product than for the inner tube product. Much of the outer tube product must still follow a circuitous flow path to be dispensed from the two opposed outer tube orifices. Thus, this dual dispense tube orifice and neck also is not suitable for dispensing products with the same or similar flow properties in the same or substantially the same volumes. Also, it provides a dispensed stream with product mixing along two surfaces for interproduct mixing.
The Hopkins patent discloses, in
FIGS. 9 and 10
, a collapsible dual dispense tube having a sandwich-shaped orifice that provides more dispense area for the outer tube product than the sandwich orifice of the Castelli et al patent. The Hopkins patent also discloses, in
FIGS. 7 and 8
, a collapsible dispensing tube formed by an annular outer tube throat that engages the end walls of a triangular inner tube orifice. This dual dispense tube orifice and neck would not be suitable for dispensing products with similar flow properties in equal or substantially equal volumes because the flow paths and orifices for the respective products do not provide the same or substantially the same product contact surface area or flow resistances. It is believed that the direct and wide flow path for the inner tube product to and through its wide, open-centered triangular orifice has less flow resistance and pressure drop than the path for the outer tube product to and through its segmented orifice. The triangular-shaped dual dispense orifice provides product-to-product contact along three arcuate surfaces for enhanced dispensed product mixing.
It has been found that the problem with prior collapsible dispensing tubes in not being able to dispense paired products with similar flow characteristics in the same or substantially the same volumes has been that the flow path and orifice for the higher viscosity inner tube product have not provided sufficient product flow surface contact area, and hence flow resistance and pressure drop, to be equal or substantially equal to the flow resistance and pressure drop provided by the flow path and orifice for the lower viscosity outer tube product.
It has been found that for the foregoing reason, collapsible dual dispense tubes having D-shaped and sandwich shaped flow paths and orifices with dissimilar flow resistances have been unable to initially dispense products with the same or similar flow characteristics in the same or substantially the same volumes. Such dual dispense tubes have not provided sufficient flow restriction, especially as to the inner tube flow path and orifice for the higher viscosity product, to generate enough pressure drop to initially dispense the products in the same or substantially the same volumes. D-shaped and sandwich shaped orifice

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dual dispense container having cloverleaf orifice does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dual dispense container having cloverleaf orifice, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual dispense container having cloverleaf orifice will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2952433

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.