Dual closure nozzle

Fluid sprinkling – spraying – and diffusing – Terminal outlet formed between parts mounted for relative...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C239S458000

Reexamination Certificate

active

06561439

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to nozzles that direct and control delivery of a material from a source, and more particularly to rotary barrel adjustable water hose nozzles that are moveable from a closed position to an open position and again to a closed position.
2. Background Information
A variety of adjustable nozzles exist that are used to control and direct the delivery of a material from a source. Liquid materials are often carried under pressure from a source through a carrier such as a hose or conduit. Many times the delivery of the liquid from the hose or conduit to an intended location is accomplished through a nozzle. Common types of nozzles include fire hose nozzles, garden nozzles, washing nozzles, and other types of nozzles. Nozzles are generally configured to perform an intended function. For example, a fire hose must be able to direct desired amounts of water in desired patterns under various pressures depending upon the specific necessities of the user. A garden hose nozzle may be configured to produce a light spray for watering delicate flowers and plants, as well as to deliver a heavier stream of water for washing sidewalks or other surfaces. A washer type nozzle may need to be able to deliver various pressures and amounts of water depending upon the requirements of the situation at hand. Some nozzles are configured to provide a continuous delivery of material through the nozzle, while others are configured to be adjustable from an open position, where material flows out of the nozzle, to a closed position, where material is prevented from leaving through the nozzle.
One common configuration of a nozzle provides an inner portion and an outer portion moveably interconnected by a threaded means that allows the outer portion of the nozzle to twist about the inner portion. These two portions are generally configured so that when the threaded means are engaged, the outer portion is moveable from a position where the inner portion and the outer portion are in a form of compressive engagement, or to a position where this compressive engagement is relaxed. In most cases, when the inner portion and the outer portion are positioned in compressive engagement, material cannot leave the nozzle. As this compressive engagement is relaxed, the nozzle begins to open and material is then able to pass out of the nozzle. Depending upon the configuration and structure of the portions of the nozzle, the patterns, amounts, velocities, and pressures of the liquid leaving the nozzle can vary.
In many applications, twisting or adjusting the nozzle away from the closed position generally functions to increase the amount of material flowing out of the nozzle. Depending upon the specific configuration of the nozzle, this adjustment may decrease the amount of spray from the nozzle and increase the amount of liquid that flows directly out of the nozzle in a stream of flow. This opening movement will generally stop at a position where a maximum amount of flow out of the nozzle will occur. In these same types of embodiments, twisting the outer portion of the nozzle in a manner that compresses the inner and outer portions of the nozzle will cause the direct flow from the nozzle to be decreased and the spray pattern to be increased. As this compressive movement continues, the inner and outer portions of the nozzle will generally engage and compress. As this compression occurs, the flow of liquid through the nozzle will be reduced and eventually shut off.
While this type of nozzle is useful in many applications, it also has some distinct disadvantages. First, because only one closed position exists, several turns of the outer portion of the nozzle are required to adjust the flow of the liquid and to turn the nozzle off and on. This structure also requires that to adjust the delivery of liquid out of the nozzle, the outer portion must be twisted or otherwise adjusted through all of the various dispersion patterns until arriving at a position where the nozzle is closed. Some of these nozzles also have a tendency to leak, provide irregular dispersal patterns, and may be awkward and/or difficult to use.
Therefore, it is an object of this invention to provide an adjustable nozzle, which allows for flow of liquid through the nozzle to be stopped at two different nozzle positions. It is also an object of this invention to provide a nozzle, which opens and closes by turning a portion of the nozzle in a clockwise or counterclockwise direction. It is a further object of the invention to provide a nozzle with increased ease of use.
Additional objects, advantages and novel features of this invention will be set forth in part in the description as follows and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention. The objects and advantages of the invention are to be realized and obtained by the means of the instrumentalities and combinations particularly pointed out in the appended claims.
SUMMARY OF THE INVENTION
The present invention is a dual closure nozzle for use with a hose carrying a liquid under pressure. The nozzle is configured so that the nozzle can be moved from a first closed position through a variety of open positions to a second closed position. In one embodiment of the invention, the dual closure nozzle is made up of an outer sleeve threadedly connected around an inner delivery conduit. The outer sleeve has an opening at a receiving end for receiving the inner conduit and a discharge opening at a second end for allowing discharge of a fluid material therefrom. A bore extends from the receiving end to the discharge end and is configured to receive an inner conduit therein. Within the outer sleeve, a first sealing race and a second sealing race circumvolve the bore. The first sealing race is disposed within the bore closer to the receiving end and the second sealing race is disposed closer to the discharge end of the bore.
The inner conduit is configured for insertion within the receiving end of the outer sleeve, and extends within the bore. The inner conduit has an inlet opening configured for the passage of fluid material from an external source such as a garden hose into the inner sleeve and at least one outlet for the passage of the fluid material out from the inner conduit and into the outer sleeve. A first sealing means is located between the outer sleeve and the inner conduit and is configured to prevent the passage of fluid material out from the outer sleeve through the opening at the discharge end. A second sealing means is also located between the inner conduit and the outer sleeve and is configured to prevent the passage of fluid material out from the outer sleeve through the opening at the receiving end. The inner conduit and the outer conduit are held together by a threaded connection means which allows the outer sleeve to be displaced longitudinally by twisting the outer sleeve about the inner conduit.
In one embodiment of the invention, the nozzle is configured so that when the outer sleeve and inner conduit are configured in a first closed position, the first sealing means is in fluid tight engagement with the second sealing race. Twisting the outer sleeve about the inner conduit causes the outer sleeve to move longitudinally along the inner conduit. As this outer sleeve moves longitudinally along the inner conduit, the device moves from this first closed position through a variety of open positions to a second closed position. At this second closed position, the first sealing means is in fluid tight engagement with the first sealing race.
In another embodiment of the invention, the inner conduit has an end cap connected to an end of the conduit located distally from the inlet opening. The end cap is configured for fluid tight engagement with the second sealing race. In this embodiment, when the outer sleeve is rotated, the threaded portions move the outer sleeve longitudinally from a first closed position wherein the first seal

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dual closure nozzle does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dual closure nozzle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual closure nozzle will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3055045

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.