Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – For cleaning a specific substrate or removing a specific...
Reexamination Certificate
2000-03-22
2001-10-23
Gupta, Yogendra N. (Department: 1751)
Cleaning compositions for solid surfaces, auxiliary compositions
Cleaning compositions or processes of preparing
For cleaning a specific substrate or removing a specific...
C510S130000, C510S140000, C510S406000, C510S417000, C222S136000
Reexamination Certificate
active
06306806
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a composition for depositing both hydrophilic (e.g., glycolic acid, lactic acid, hydroxy caprylic acid, water soluble vitamins etc.) and hydrophobic (e.g., petrolatum forming the oil part of emulsion) benefit agents in greater amounts than previously possible when using PW shower gel type liquids and/or facial cleansers all while maintaining good foam stability. Specifically, the invention relates to a dual chamber system in which one composition/stripe comprises a surfactant; and a separate composition/stripe, which is co-dispensed, comprises a water in oil emulsion comprising one or more benefit agents. Use of a water-in-oil emulsion rather than an oil in water emulsion as the benefit agent stripe has unexpectedly been found to result in much greater deposition of benefit agent (water soluble benefit agents such as glycolic; non-water soluble benefit agents, and even “semi-soluble” benefit agents solubilized in other components, e.g., salicylic acid solubilized in polyalkylene glycol emulsified in oil).
BACKGROUND OF THE INVENTION
It is greatly desirable to deposit soluble benefit agents (e.g., water soluble benefits such as glycolic acid or lactic acid) and/or hydrophobic agents (e.g., petrolatum) and/or those in between on the skin or other substrate.
However, deposition of benefit agent, particularly water soluble ones, is extremely difficult to accomplish, especially from wash-off type products (e.g., shower gels) because the benefit agent will essentially wash off when the user rinses with water. Although it is easier to deposit a hydrophobic benefit agent (e.g., silicone or petrolatum), rinse-off can still be a problem here as well.
Unexpectedly, applicants have found that, by forming a water-in-oil emulsion of, for example, a water soluble benefit agent in a hydrophobic emulsion and separately dispensing the benefit agent containing emulsion in one stripe and a surfactant containing composition in another, applicants have been able to deposit greater amounts of both the water soluble benefit agent and of the oil forming the emulsion than otherwise achievable (e.g., either through single stripe cleanser or through dual stripe cleanser having only oil in water emulsion rather than water-in-oil emulsion of invention).
The use of separate surfactant and benefit agent stripes is not itself new. U.S. Pat. No. 5,612,307 to Chambers et al., for example, teaches a dual chamber package comprising separate surfactant and benefit agent stripe. The benefit agent in that reference is lipophilic benefit agent only rather than water-soluble benefit agent in oil emulsion. That is, the benefit agent is not in water-in-oil emulsion form such as the benefit agent stripe of the invention.
A multiple emulsion benefit stripe is taught in applicants' copending application entitled “Dual Chamber Cleansing System Comprising Multiple Emulsion” to St. Lewis et al., but this reference does not teach that a water-in-oil benefit stripe in such dual chamber system can provide remarkable deposition relative to, for example, oil-in-water stripe.
BRIEF SUMMARY OF THE INVENTION
Unexpectedly, applicants have found that a dual chamber dispenser comprising a surfactant containing stripe on one side and a water-in-oil emulsion containing benefit stripe on the other (wherein the internal water phase preferably, but not necessarily, contains at least one water soluble benefit agent) is able to deliver both the water soluble benefit agent and the oil which forms the emulsion to the skin or other substrate in greater amounts than otherwise possible, i.e., than if using single stripe or using, for example, an oil in water emulsion as the benefit stripe.
Specifically, the invention comprises:
An aqueous liquid cleansing and moisturizing composition comprising an at least dual chamber dispenser (in theory more than two stripes may be dispensed and the invention is not necessarily limited by the number of stripes) comprising:
(A) 10 to 99.9% by wt., preferably 30 to 99.9%, more preferably 50 to 99.9% of a surfactant containing stripe wherein about 1 to 75%, preferably 5 to 70% of said surfactant stripe comprises a surfactant selected from the group consisting of anionic, nonionic, zwitterionic and cationic surfactants, soap and mixtures thereof (water, solute, opacifier, bactericides and other standard ingredients may also be found in the stripe); and
(B) 0.1 to 99%, preferably 0.1 to 70%, more preferably 0.1 to 50% by wt. of a water-in-oil emulsion stripe comprising:
(1) About 1 to 99% of an internal aqueous phase comprising water, optional solute (0 to 30%, preferably .01 to 10% solute) and optional surfactant (0 to 30%, preferably 0.01 to 15%);
(2) 0.5 to 99%, preferably 1 to 80% of the emulsion of an oil phase surrounding said internal aqueous phase;
(3) about 0.1 to 20%, preferably 1 to 15% of a low HLB emulsifier (e.g., HLB under 10); and
(4) optionally an effective amount (e.g., 0 to 40%, preferably 0.01 to 30%, preferably 0.25 to 25% of (1) a topically effective water-soluble compound (e.g., glycolic acid) found in the internal aqueous phase or (2) a “less” water soluble compound (e.g., salicylic acid) solubilized by, for example, polyalkylene glycol and/or other diluent such that it is solubilized in the internal aqueous phase.
Generally 1-40%, preferably 1-30% of this “less soluble” compound (e.g., salicylic acid) is solubilized in the diluent (e.g., PAG).
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to an at least dual chamber dispenser comprising a surfactant containing stripe on one side ((A) above) and a water-in-oil emulsion containing stripe ((B) above) on the other. The water in oil emulsion comprises an internal water phase, which may contain a water soluble benefit agent (e.g., glycolic acid) or a benefit agent solubilized in a diluent (e.g., salicylic acid in polyalkylene glycol) wherein the internal phase is emulsified in an oil phase. Each of the various components is described in greater detail below.
SURFACTANT STRIPE (Component (A))
One stripe of the dispenser of the invention is the surfactant stripe. The surfactant containing stripe is really not limited in any way and any viable surfactant system may be used although preferably this will be a “mild” surfactant system.
The surface active agent can be selected from any known surfactant suitable for topical application to the human body. As noted, mild surfactants, i.e., surfactants which do not damage the stratum corneum, the outer layer of skin, are particularly preferred.
One preferred anionic detergent is fatty acyl isethionate of formula:
RCO
2
CH
2
CH
2
SO
3
M
where R is an alkyl or alkenyl group of 7 to 21 carbon atoms and M is a solubilizing cation such as sodium, potassium, ammonium or substituted ammonium. Preferably at least three quarters of the RCO groups have 12 to 18 carbon atoms and may be derived from coconut, palm or a coconut/palm blend.
Another preferred anionic detergent is alkyl ether sulphate of formula:
RO(CH
2
CH
2
O)
n
SO
3
M
where R is an alkyl group of 8 to 22 carbon atoms, n ranges from 0.5 to 10 especially from 1.5 to 8, and M is a solubilizing cation as before.
Other possible anionic detergents include alkyl glyceryl ether sulphate, sulphosuccinates, taurates, sarcosinates, sulphoacetates, alkyl phosphate, alkyl phosphate esters and acyl lactylate, alkyl glutamates and mixtures thereof.
Sulphosuccinates may be monoalkyl sulphosuccinates having the formula:
R
1
O
2
CCH
2
CH(SO
3
M)CO
2
M;
and amino-MEA sulphosuccinates of the formula:
R
1
ONHCH
2
CH
2
O
2
CCH
2
CH(SO
3
M)CO
2
M;
wherein R
1
ranges for C
8
-C
20
alkyl, preferably C
12
-C
15
alkyl and M is a solubilizing cation.
Sarcosinates are generally indicated by the formula:
R
2
CON(CH
3
)CH
2
CO
2
M,
wherein R
2
ranges from C
8
-C
20
alkyl, preferably C
12
-C
15
alkyl and M is a solubilizing cation.
Taurates are generally identified by the formula:
R
3
CONR
4
CH
2
CH
2
SO
3
M,
wherein R
3
ranges from C
8
-C
20
alkyl preferably C
12
-C
15
alkyl, R
4
ranges from C
Knaggs Helen Elizabeth
St. Lewis Dale
Gupta Yogendra N.
Koatz Ronald A.
Unilever Home & Personal Care USA Division of Conopco, Inc
Webb Gregory E.
LandOfFree
Dual chamber cleansing system comprising water-in-oil... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Dual chamber cleansing system comprising water-in-oil..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual chamber cleansing system comprising water-in-oil... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2576297