Dual-calibrated compass

Data processing: vehicles – navigation – and relative location – Navigation – With indicated course correction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S200000, C701S207000, C702S085000, C702S092000, C702S093000

Reexamination Certificate

active

06192315

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to magnetic direction sensing systems and particularly those for use in vehicles.
U.S. Pat. No. 4,953,305, assigned to the present assignee, discloses a magnetic field sensor and microprocessor-controlled compass system for a vehicle. The system senses the magnitude of the earth's magnetic field in two channels of measurement. The sensor data, if plotted on an X-Y coordinate plane, would be as shown in FIG.
1
. For a properly calibrated compass, the plot of sensor data creates a perfect circle centered around the origin of the coordinate plane when the vehicle travels in a 360 degree loop, as indicated by graph A of FIG.
1
. The radius of the circle represents the detected earth's magnetic field strength, and the vehicle's compass heading at a particular time during travel is represented by a point on the circle. By calculating the angle which the point forms with the X-Y coordinate plane, the compass heading of the vehicle may be determined. As is known, depending on the location of the vehicle, the detected magnitude of the earth's magnetic field can vary significantly.
The sensed magnetic field will also be affected if there is a change in vehicular magnetism. Changes in the magnetism of a vehicle can be caused by, for example, driving the vehicle near the electrical power feeders of train or subway systems, installing a magnetic cellular antennae on the vehicle's roof, parking under an AC powerline, or even driving through a car wash which can flex the sheet metal in the vicinity of the compass sensor and change its magnetic characteristics. Such a change in vehicular magnetism will cause the magnetic field sensed by the compass channels when the vehicle is heading in a given direction to be either greater or lesser than that expected for a vehicle with no magnetic interference. As a result, the plot of sensor data will be shifted away from the origin of the coordinate plane in some direction, resulting in a pattern such as the circle shown as graph B of
FIG. 1
when the vehicle travels a 360 degree loop. The magnitude of the shift of sensor data from the origin is proportional to the magnitude of the change in vehicular magnetism.
The compass system of the above-mentioned patent provides automatic and continuous calibration to account for changes in the vehicle's magnetism and thus the system's reaction to the earth's magnetic field during the life of the vehicle. The calibration system includes means for testing the data received from the compass sensor to determine the maximum and minimum signal levels during movement of the vehicle through a completed 360 degree path of travel. This data is averaged over several such paths of vehicular travel to provide continuously updated and averaged compensation correction information. The automatic and continuous calibration is capable of correcting the compass system when the plot of sensor data experiences small shifts away from the origin of the coordinate plane due to small drifts in vehicular magnetism. The origin of the coordinate plane in these circumstances is still contained within the circle plotted when the vehicle travels a 360 degree loop, and the crossings of the sensor data on the axes of the coordinate plane are used to calculate the spans of the signal levels along each axis which determine the center of the circular plot of sensor data. Compensation signals are then generated based on the difference between the center of the circle and the origin of the coordinate plane. However, if the shift of sensor data is large enough such that the origin of the coordinate plane is not contained within the circular plot of sensor data created when the vehicle travels a 360 degree loop, then heading information cannot be calculated and the calibration system cannot provide correction in this somewhat unusual situation unless the sensor data experiences a subsequent shift that causes the origin of the coordinate plane to again be contained. Because such a subsequent shift may never occur or, if it does, may occur only after an undesirably long period of time, the compass system of the above-mentioned patent provides means to reinitiate calibration in these situations.
Reinitiation of calibration involves the collecting and centering of spans of sensor data followed by the collecting and centering of two circles of sensor data which causes the origin of the coordinate plane to coincide with the center of the circular plot of sensor data. As such, the reinitiation process enables the compass system to recover from any change in vehicular magnetism and to provide accurate heading information. In order to detect situations where reinitiation of the calibration system is desirable, it is known to have the compass system maintain saturation limits at the outer boundaries of the range of measurement of the sensor data. For 8-bit sensor data, these saturation limits are at 0 and 255, as shown in FIG.
1
. If a large change in vehicular magnetism causes the sensor data to shift and the current data is plotted outside of these limits for a continuous period of five minutes, then calibration is restarted. Such a shift is shown by graph C of
FIG. 2
, with the dashed portion thereof indicating the range of heading directions of the vehicle that would cause the sensor data to remain outside of the saturation limits. However, intermediate changes in vehicular magnetism are possible which, while causing the plot of sensor data to shift and to not contain the origin of the coordinate plane when the vehicle completes a 360 degree loop, do not cause the sensor data to be plotted outside of the saturation limits. Such a shift is shown by graph D of FIG.
3
. As such, it is known to also provide for a reinitiation of calibration if 15 ignition cycles of at least 5 minutes duration are completed without obtaining a crossing point on the axes of the X-Y coordinate plane. Furthermore, it is known to enable the operator of the vehicle to manually reinitiate calibration by operating a switch, button, or the like. Manual reinitiation would most likely occur when the operator notices that the displayed heading information is erroneous for an extended period of time. The above-mentioned means by which to cause reinitiation of calibration enables the compass system to ultimately recover from changes in vehicular magnetism of any magnitude.
Because automatic calibration routines are intended to compensate for the specific vehicular magnetism of the vehicle in which the compass is installed, and because vehicular magnetism can vary greatly from one vehicle to the next, such automatic calibration routines cannot be calibrated before or during installation at the vehicle assembly plant. To acquire sufficient data from the magnetic sensors to have a high level of confidence that the compass system is properly calibrated, automatic calibration routines such as that described above, typically require that the vehicle be driven through at least one 360 degree loop and preferably through two or three 360 degree loops. However, because space constraints at an assembly plant typically do not permit vehicles to be driven in this many loops, newly manufactured vehicles having such compass systems, are typically transported to dealerships before the automatic calibration routine is able to properly calibrate the compass. If these vehicles are not subsequently driven in a sufficient number of loops to calibrate the compass prior to delivery to the buyer, the buyer may be led to believe that the compass system is defective. Due to a large number of warranty claims arising under these circumstances, some automobile manufacturers have now required that suppliers of compass systems ensure that they are precalibrated so as to compensate for any expected vehicular magnetism prior to delivery to the dealerships. The precalibration data used to calibrate the compass would, for example, correspond to average compensation data used for vehicles of a particular make and model.
As

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dual-calibrated compass does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dual-calibrated compass, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual-calibrated compass will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2572987

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.