Dual-band glass-mounted antenna

Communications: radio wave antennas – Antennas – With vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C343S715000, C343S860000

Reexamination Certificate

active

06608597

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to antenna systems for radio-telephone communications, and more particularly, to multiple-band antenna systems usable in cellular and PCS frequency ranges and adapted for coupling through and mounting upon a glass window or other planar dielectric surface.
BACKGROUND OF THE INVENTION
Recent developments in the wireless telephone communications industry have created the need for wireless subscriber terminals or “wireless telephones” capable of operating in two widely displaced frequency ranges. In the United States, the frequency range from approximately 824 to 894 MHz (with some gaps) has been allocated for conventional “cellular” radio telephone service, and the frequency range from approximately 1850 to 1990 MHz has been allocated for “Personal Communications System” (PCS) service. Cellular systems, some of which have been in commercial operation since 1984, are relatively mature. Cellular systems provide “blanket” coverage throughout many metropolitan areas and geographically extensive coverage in many other areas where the population density or vehicular traffic are sufficient to warrant coverage.
PCS systems, on the other hand, have been developed more recently, and have a relatively small subscriber base. Some metropolitan areas do not yet have working PCS systems, and even in areas in which one or more PCS systems exist, such systems do not yet provide coverage which is as geographically extensive as that provided by mature cellular systems. As a result, a subscriber to a particular PCS system may often be in a location in which the subscriber's PCS system is not available, but a cooperative cellular system is available. This could occur, for example, when the subscriber is located within a coverage void in a “home” region generally served by the subscribed PCS system. This could also occur when the subscriber is located outside the home region, such as in a city where the subscriber's wireless service provider does not operate a PCS system.
In order to enable PCS system subscribers to obtain wireless telephone service in areas in which the subscribed PCS system is unavailable but a cellular system is available, wireless telephone manufacturers have developed wireless telephones capable of operation in both the cellular and PCS frequency bands. For convenient reference, the term “cellular” as applied to frequencies or frequency bands is used herein to refer to the frequency bands allocated in the United States to the Domestic Public Cellular Telecommunications Radio Service (generally, 824 to 894 MHz), and to nearby frequencies, without regard to the type of service, radio protocol standards, or technology actually in use at such frequencies. The term “PCS” as applied to frequencies or frequency bands is used herein to refer to the frequency bands allocated in the United States to Broadband Personal Communications Services (generally, 1850 to 1990 MHz), and to nearby frequencies, without regard to the type of service, radio protocol standards, or technology actually in use at such frequencies.
Hand-held wireless telephones are typically equipped with a small, flexible antenna capable of operating, to some extent, in both the cellular and PCS frequency bands. Antennas of this type are very short compared to the wavelength of the signals to be transmitted and received, and are therefore inefficient. Such antennas may be adequate when the wireless telephone is used in a location which affords a relatively short, unobstructed RF path to the base station with which communication is desired. However, when the wireless telephone is used in other locations, a better antenna is needed.
In particular, when the wireless telephone is used inside a vehicle, the structure of the vehicle both obstructs the RF path between the telephone and the base station, and scatters a substantial amount of the RF energy which would otherwise be transmitted or received by the wireless telephone. Accordingly, it is highly desirable to connect the portable telephone to an efficient antenna located on the exterior of the vehicle. This is especially important when operating in the PCS frequency band. Radio signal propagation characteristics at PCS frequencies are significantly poorer than at cellular frequencies, and the transmitter power allowed at PCS frequencies is significantly lower than the transmitter power allowed at cellular frequencies.
A popular type of antenna used in cellular and other vehicular applications is a glass-mounted or window-mounted antenna. Such antennas generally include an external portion semi-permanently affixed to the exterior surface of a vehicle window, and an internal portion semi-permanently affixed to an interior surface of the vehicle window at a position opposite the exterior portion. The interior portion is electrically connected to a suitable transmission line cable which, in turn, may be connected to the mobile telephone transceiver. The internal portion is electrically coupled to the external portion through the glass separating the two portions. The interior portion may incorporate a circuit for matching the impedance of the antenna to the impedance of the transmission line cable and for controlling the impedance of the coupling through the glass. In addition, the interior portion (or an element thereof) may function as a counterpoise.
Glass-mounted antennas are preferred in many applications because installing such antennas does not require drilling holes in an exterior vehicle surface either for use in mounting the antenna or for passing a transmission line cable from the antenna to the interior of the vehicle. This avoids problems with leakage of air and water into the vehicle, and allows the antenna to be removed from the vehicle without sealing or repairing the holes. Although temporarily installed antennas are available, many are visually obtrusive and require the transmission line cable to be passed through an existing door or window opening. As a result, the transmission line cables are often damaged.
A glass-mounted antenna generally as described above, for use at frequencies below those used in cellular and PCS communications, is disclosed in Parfitt, U.S. Pat. No. 4,238,799, which is assigned to the assignee of the present application. Glass-mounted antennas for use at cellular frequencies are disclosed in Hadzoglou, U.S. Pat. No. 4,839,660, which is assigned to the assignee of the present application, and in Larsen U.S. Pat. No. 4,764,773. It is believed that in each of these antennas, the mechanism by which coupling is achieved through the glass is primarily capacitive. Each of these antennas is designed to operate over a reasonably wide, but nonetheless limited, range of frequencies surrounding an optimum operating frequency. For example, such cellular antennas typically as cover the entire U.S. cellular frequency band.
However, none of the antennas described in the aforementioned patents are designed or optimized specifically for operation in the PCS frequency band (1850-1900 MHz). Many existing cellular through-the-glass antennas tend to perform poorly in the PCS band due to reasons such as mismatched impedances, poor coupling through the glass, and distorted radiation characteristics in the PCS frequency band. Similarly, many existing PCS antennas tend to perform poorly in the cellular band due to reasons such as mismatched impedances, for similar reasons.
Although there exist well-known techniques for modifying an existing antenna design to operate at a different frequency, such techniques often cannot be applied when the target operating frequency differs widely from the original operating frequency, because structures and materials may behave electrically in a fundamentally different manner. Moreover, even if the aforementioned antenna designs could be modified to operate at PCS frequencies, the bandwidths of the antennas are not sufficiently wide to allow them to be simultaneously adapted to operate satisfactorily at both cellular and PCS frequencies. Thus, a wireless subscriber usin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dual-band glass-mounted antenna does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dual-band glass-mounted antenna, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual-band glass-mounted antenna will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3075321

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.