Photography – Aerial camera
Reexamination Certificate
2000-08-31
2002-11-05
Adams, Russell (Department: 2851)
Photography
Aerial camera
C396S008000, C348S146000
Reexamination Certificate
active
06477326
ABSTRACT:
BACKGROUND OF THE INVENTION
A. Field of the Invention
This invention relates generally to the field of aerial reconnaissance photography and camera systems used for such photography. More particularly, in a principal aspect the invention relates to a reconnaissance camera that generates frames of imagery of terrain in different portions or bands of the electromagnetic spectrum simultaneously.
The invention also relates to a novel method by which a camera compensates for image motion due to both camera rotation and forward motion of the aircraft in which the camera is installed. Such image motion compensation allows for high-resolution images to be obtained from the camera system.
B. Description of Related Art
Long Range Oblique Photography (LOROP) cameras have been developed as a result of the need to obtain clear, high resolution pictures from longer ranges, typically from 10 to 50 nautical miles from the terrain of interest. The advent of LOROP cameras was an outgrowth of development of weapons technology, which could engage reconnaissance aircraft at ever-increasing distances, and geopolitical boundaries that became more and more difficult to encroach upon.
With the advent of LOROP cameras came the operational intricacies of using very sensitive and high performance instruments in a fashion that yielded the intelligence, i.e., image resolution, required of them. These operational issues were hostage to the technological limitations of the day. Initially, all cameras were film. Film LOROP cameras have been operated both as panoramic scanning (line scan) and framing cameras. Panoramic scan cameras collect an image with a smooth rolling motion of the camera while exposing film by pulling it passed a slit. The advantage of this approach was ease of implementation of the scanning mechanism. The disadvantage is that each line of exposed imagery was taken from a different perspective, hence the scanning system inherently was prone to creating geometrically and geospatially distorted images.
Subsequently, LOROP film framing cameras were employed. These cameras captured a frame of imagery by rapidly moving a slit across the film for exposure. The cameras utilized a scan head mirror assembly that could be moved in order to take successive frames of imagery at a selected depression angle relative to the horizon, depending on the target location.
Later, electro-optical line scan cameras entered the market as a filmless solution. Instead of film, the cameras used a solid state linear line scan charge coupled device (CCD) as a detector. These cameras used a scan mirror or the motion of the ground below the aircraft to scan the image across the line of photosensitive detectors that made up the CCD to form a frame, line by line. Again, the disadvantage of this method was that imagery was obtained from a different perspective as the aircraft moved, resulting in geometrically and geospatially distorted images.
Step framing cameras were developed which take a full frame of imagery at one time, then step the camera to a new angular position, take the next frame of imagery (with some overlap between the images to insure 100% coverage), step and generate a new frame of imagery, and so on until the desired scene is covered. The disadvantage of step framing cameras was that the stepping action was very difficult to accomplish with the whole camera, therefore it had to be broken into a scan head that performed the stepping and an image de-rotation mechanism, both of which were tied together by a synchronized drive system. The advantages of step frame cameras as compared to line scanning cameras are higher geometric fidelity and geo-spatial accuracy. Originally, full framing cameras were all film.
The next revolutionary step in the art of LOROP and tactical aerial reconnaissance cameras was the development of two-dimensional area array electro-optical (E-O) detectors. This occurred several years after the electro-optical linear arrays were first developed, and required semiconductor processing technology to mature many more years before such arrays were practical for reconnaissance use. Recon/Optical, Inc., the assignee of the present invention, in the early 1990's, introduced large area focal plane arrays to the reconnaissance industry. One such array is described in U.S. Pat. No. 5,155,597 to Andre G. Lareau et al., the contents of which are incorporated by reference herein. Such cameras were the first large area arrays to be used in tactical aircraft, as well as strategic reconnaissance aircraft such as the high altitude SR-71 aircraft. These large area arrays had the advantage of providing an image from a single point in space giving excellent geometric fidelity. Moreover, the high pixel count, and optimal pixel size, allowed such cameras to produce imagery having outstanding image resolution.
Furthermore, as described in the '597 Lareau et al. patent, it was possible to perform forward motion compensation in side oblique, forward oblique and nadir camera orientations electronically. U.S. Pat. No. 5,668,593, also to Lareau et al., describes a step-frame electro-optic camera system with electronic forward motion compensation. U.S. Pat. No. 5,798,786, also to Lareau et al., describes a method for compensation for roll, pitch or yaw motions of an aerial reconnaissance vehicle, in addition to forward motion compensation, electronically in the focal plane of an E-O detector. The '593 and '786 Lareau et al. patents are incorporated by reference herein.
Framing E-O LOROP camera systems were a logical platform to host the advanced detectors such as described in the Lareau et al. '597 patent. Electro-optical detectors, such as described in the Lareau et al. '597 patent, are capable of being fabricated from selected materials that can detect incident radiation in a variety of portions of the electromagnetic spectrum, and not just the visible spectrum. In particular, the advantages of large area framing can be enhanced by providing imaging capability in the infrared (IR) portion of the spectrum. A camera that generates frames of imagery in two distinct portions of the electromagnetic spectrum simultaneously is referred to herein as a “dual band framing camera.” The patent to Gilbert W. Willey, U.S. Pat. No. 5,841,574, also assigned to Recon/Optical, Inc., describes a multi-spectral, decentered aperture, catadioptric optical system particularly suitable for a dual band line scanning camera system having two linear electro-optical detectors, one for the visible or near IR (&lgr;=0.5 to about 1.0 microns), and one for either the mid-wavelength IR (&lgr;=about 3.0 to about 5.0 microns) or the long-wavelength IR (&lgr;=about 8.0 to about 14.0 microns).
The technological capability of dual band framing LOROP cameras promises performance heretofore unavailable anywhere. However, the implementation of such a camera presents a number of difficulties and technical challenges beyond those posed for prior art systems. These challenges are optical, servo-mechanical and operational, and are discussed in further detail below. The present invention provides a dual band framing aerial reconnaissance camera system that overcomes these challenges and difficulties to provide an advanced, high resolution framing camera system that generates imagery of a scene of interest at two different bands of the electromagnetic spectrum.
SUMMARY OF THE INVENTION
A dual-band framing aerial reconnaissance camera for installation in an aerial reconnaissance vehicle has been invented. The camera includes an optical system incorporated into a camera housing. The optical system comprises an objective optical subassembly that receives incident radiation from a scene external of the vehicle. Radiation from the scene is reflected from the objective optical subassembly to a spectrum-dividing prism. The prism directs radiation in a first band of the electromagnetic spectrum, such as visible and near IR, into a first optical path and directs radiation in a second band of the electromagnetic spectrum
Baker Allie M.
Beran Stephen R.
Jones John
Partynski Andrew J.
Wyatt Stephan
Adams Russell
Koval Melissa
McDonnell & Boehnen Hulbert & Berghoff
Recon /Optical, Inc.
LandOfFree
Dual band framing reconnaissance camera does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Dual band framing reconnaissance camera, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual band framing reconnaissance camera will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2915429