Dual-band, dual-mode power amplifier

Telecommunications – Transmitter and receiver at same station – Radiotelephone equipment detail

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S093000, C330S295000, C330S126000, C330S051000

Reexamination Certificate

active

06298244

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Invention
The present invention relates generally to power amplifiers and in particular to a dual-band, dual-mode power amplifier.
2. Description of Related Art
In the United States, cellular operating licenses have been awarded by the Federal Communication Commission (FCC) pursuant to a licensing scheme which divides the country into geographic service markets. Cellular licenses were originally granted for radio frequency (RF) blocks in the 800 MHz range. Most 800 MHz cellular telephone systems in the United States utilize the Advanced Mobile Phone Service (AMPS) analog air interface standard. A later generation air interface standard for the 800 MHz band, known as D-AMPS, has subsequently been developed and implemented. The D-AMPS standard comprises both digital and analog cellular communication. Thus, there are presently both analog (AMPS) and digital (D-AMPS) cellular telephone networks in operation at 800 MHz in the United States.
In response to increased demand for cellular services, a number of digital air interface standards were developed for providing efficient digital communication of voice, data, fax and text messages under the umbrella of “personal communications services” or PCS.
Operational PCS systems, such as systems based on the GSM TDMA (Time Division Multiple Access) or IS95 CDMA (Code Division Multiple Access) air interface standards, are being implemented in the United States in the 1900 MHz frequency range. Meanwhile, existing 800 MHz cellular systems are continuing to operate.
Thus, there are presently operating in the United States analog and digital cellular systems at 800 MHz and digital PCS systems at 1900 MHz. Mobile subscribers who desire to receive services from systems operating at 800 MHz and from systems operating at 1900 MHz must either use two different mobile transceivers capable of operating within the cellular or 800 MHz band and the PCS or 1900 MHz band, respectively, or, preferably, use a single “dual-band” mobile transceiver which can receive and transmit RF signals in both frequency bands. Moreover, mobile subscribers who wish to communicate using both analog and digital systems must again either use two different mobile transceivers or, preferably, use a single “dual-mode” transceiver. Ideally, a mobile transceiver is capable of both dual-mode and dual-band operation to provide the user with maximum flexibility and functionality.
A problem arises, however, in that the power amplifier used in a mobile transceiver is typically optimized for use in a particular band (i.e. PCS or AMPS) and in a particular mode (i.e. analog or digital). This problem is manifested in two ways: as an impedance matching problem and as an amplifier biasing problem.
For maximum efficiency, the impedance at the output of the amplifier must be matched to the impedance of a duplexer/diplexer prior to transmission. However, the impedance of the matching circuit is dependent on the frequency of operation. Thus, a conventional matching circuit optimized for matching the impedance of an amplifier at 800 MHz will generally not optimally match the impedance of the same amplifier operating at 1900 MHz. Moreover, the impedance of the amplifier is dependent on the mode of operation. Thus, a conventional matching circuit optimized for matching the impedance of an amplifier operating at 800 MHz in the AMPS mode will not adequately match the impedance of the same amplifier operating at 800 MHz in the D-AMPS digital mode.
The biasing problem arises due to the fact that the efficiency of an amplifier is dependent on the mode or class of operation of the amplifier which is determined by the modulation technique employed. Typically, analog communication systems employ well known frequency modulation (FM) techniques to modulate analog information onto a carrier signal, while digital communication systems employ digital modulation schemes, such as &pgr;/4 DQPSK (Differential Quadrature Phase Shift Keying) modulation. Signals transmitted using frequency modulation are most efficiently amplified by a power amplifier biased and operating in non-linear or saturated mode. Signals transmitted using &pgr;/4 DQPSK modulation, on the other hand, are most efficiently amplified by a power amplifier biased and operating in linear mode.
One possible solution to these problems is to provide a separate amplifier chain for both high-band (1900 MHz) and low-band (800 MHz) operation, as illustrated in FIG.
1
. However, this solution is expensive, redundant and wasteful. Moreover, the problem of biasing the low-band amplifier still exists, since the low-band amplifier must amplify both digital and analog signals.
In transceivers having a single amplifier chain, one possible solution to the impedance matching problem is to provide the amplifier with separate, switched high-pass and low-pass matching networks at its output. However, the switch must be capable of handling high power, which tends to require a large, costly switch. Moreover, the match at 800 MHz will necessarily be a blended match, causing a loss of efficiency in the analog mode.
Another solution to the impedance matching problem is to provide a broadband power matching circuit covering both desired frequency bands and having peaks at the transmit bands. Such a configuration would tend to waste bandwidth, however, when the desired match frequencies differ by an octave or more and the desired bandwidth in each band is relatively narrow. Fano's Limit shows that there is a physical limitation on broadband matching when a reactive element (such as the drain-source capacitance of a transistor) is present.
In transceivers having a single amplifier chain, prior art solutions to the impedance matching problem address the biasing problem by providing separate bias levels, although the impedance match remains constant. If a single amplifier is used to amplify both analog and digital signals, the amplifier must be biased to barely meet linearity requirements while retaining as much analog efficiency as possible. Such an arrangement tends to be inefficient. As radiotelephones become smaller and power consumption requirements become stricter, such inefficient operation is highly undesirable.
Therefore, there is a need in the art for a power amplifier circuit capable of efficient operation in both 800 MHz and 1900 MHz systems and in both analog and digital systems. Such a dual-band, dual mode power amplifier preferably provides an integrated, efficient solution to the problems described above.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a power amplifier circuit for a radio transceiver capable of efficiently amplifying RF signals in a linear or saturated mode of operation.
It is a further object of the present invention to provide a power amplifier circuit for efficiently amplifying RF signals in a plurality of frequency bands or ranges.
It is a further object of the present invention to provide a dual-band, dual-mode power amplifier circuit that may be selectably placed in a linear mode of operation for amplifying DQPSK modulated signals and a saturated mode of operation for amplifying frequency modulated signals.
The foregoing and other objects are accomplished in a power amplifier circuit having a driver amplifier stage including a low band driver amplifier and a high band driver amplifier. A final amplifier stage includes a linear mode amplifier for amplifying digitally modulated signals and a saturated (nonlinear) mode amplifier for amplifying frequency modulated (analog) signals. A switching network interconnects the driver amplifier stage and the final amplifier stage. Depending on the desired mode of operation, an appropriate driver amplifier can be coupled to an appropriate final amplifier to most effectively and efficiently amplify analog or digital RF signals in either of a plurality of frequency bands.
A diplex matching circuit is coupled to the linear mode final amplifier for impedance matching and for separating D-AMPS (800 MHz band) and PCS (1900 M

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dual-band, dual-mode power amplifier does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dual-band, dual-mode power amplifier, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual-band, dual-mode power amplifier will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2617616

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.