Dry powder compositions

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Particulate form

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S002600, C424S488000, C424S489000, C424S493000

Reexamination Certificate

active

06551622

ABSTRACT:

This application claims foreign priority benefits to GB 9916316.4, filed Jul. 12, 1999.
FIELD OF THE INVENTION
This invention relates to the production of stabilised therapeutic agents, prepared using hydrophobically-derivatised carbohydrates, and to therapeutic compositions.
BACKGROUND OF THE INVENTION
Numerous therapeutic proteins and peptides are currently available for clinical use. A variety of delivery methods and routes exist, of which the parenteral route is the most widely used. Delivery via the pulmonary route is an attractive alternative mainly due to acceptability by patients. There is also evidence to suggest that relatively large molecules such as proteins can be absorbed readily across the lung surface and into the blood stream. Techniques for pulmonary delivery are still in the early stages of development, and as a result, considerable scope or new pulmonary, formulations of therapeutic proteins and peptides exists.
One way of formulating therapeutic proteins is by the use of carbohydrates, which act to stabilise the proteins during storage and also aid delivery. An example of a stabilising carbohydrate is trehalose.
Recently, there has been interest in using hydrophobically-derivatised carbohydrates (HDCS) in formulating proteins. WO-A-96/03978 discloses compositions comprising a HDC and therapeutic agent, formulated into solid dose form for direct delivery. The compositions may be powders for pulmonary delivery, microneedles or microparticles for ballistic, transdermal delivery or implantable compositions.
The advantage in having a therapeutic agent formulated with a HDC, is that there is the potential for developing controlled release delivery systems. In addition, the HDC may itself have desirable properties that aid delivery, in particular to the deep lung.
However, therapeutic proteins are generally hydrophilic, and due to the hydrophobicity of HDC molecules, the incorporation of proteins into HDCs is problematic.
There is therefore a need for an efficient process by which hydrophilic agents can be incorporated into HDCs.
SUMMARY OF THE INVENTION
The present invention is based on the realisation that hydrophilic agents can be incorporated efficiently into HDCs by the use of hydrophobic ion-pairing (HIP).
According to a first aspect of the present invention, a method for the preparation of a therapeutic composition, comprises forming a solution, in an organic solvent, of a hydrophobically-derivatised carbohydrate and an ion-pair complex of a hydrophilic therapeutic agent and an ionic substance; and drying the solution.
In one embodiment, the method comprises the steps of:
(i) mixing the therapeutic agent with the ionic substance, in an aqueous medium, to form a precipitate;
(ii) dissolving the precipitate and the HDC in an organic solvent; and
(iii) drying the resulting organic solution.
In a further embodiment, the method comprises the steps of:
(i) mixing the therapeutic agent in aqueous solution with the ionic substance to form the ion-pair complex;
(ii) adding a water-immiscible organic solvent to form an organic phase, and allowing the ion-pair complex to pass into the organic phase;
(iii) separating the organic phase;
(iv) adding the HDC to the organic phase; and
(v) drying the resulting organic solution.
According to a second aspect, a composition comprises, in solid dose form, a hydrophobically-derivatised carbohydrate, a therapeutic agent and a pharmaceutically acceptable ionic detergent.
According to a third aspect, compositions of the invention may be used in the manufacture of a medicament to be administered to a patient via the pulmonary route, for the treatment of a disease.
The products are intended for therapeutic use, and the active agent will be therapeutically active on delivery.
The effective incorporation of a hydrophilic agent into the HDC provides useful therapeutics to be formulated with desirable controlled release properties.
DESCRIPTION OF THE INVENTION
The method according to the present invention is based on the realisation that hydrophobic ion-pairing is a useful method applicable to formulating a hydrophilic agent with a hydrophobic carbohydrate.
In summary, the procedure involves generating hydrophobic ion-pairs between positive charges on the actives, e.g. proteins, and negative charges on selected anionic surfactants. Alternatively, the polarity of the charges on the protein and surfactant can be reversed.
The present method may be carried out under conditions known so those skilled in the art. It is well known that hydrophilic proteins can be precipitated out of solution using low concentrations of an anionic detergent. It appears that precipitation is the result of displacement by the detergent of counter-ions from the ion-pairs on the protein. The precipitate may then be isolated by, for example, centrifugation, and then subsequently dissolved in an organic solvent containing the HDC. The hydrophilic agent is then in solution with the HDC and can be dried to form a solid. The total recovery of the active is high, and consequently, the present method offers a commercial scale process to be developed.
Alternatively, the ion-pair may be formed without a precipitate, by phase separation. A protein in an aqueous phase is mixed with a suitable detergent to form an ion-pair. A suitable organic solvent is added to form an organic phase, and the ion-pair complex is allowed to incorporate into the organic phase. The organic phase may then be separated and mixed with the HDC, optionally comprised within a further organic solvent.
Hydrophilic Agents
The hydrophilic agents that may be used in the present invention include any therapeutically active protein, peptide, polynucleotide or ionic drug. In particular, the agent may be an enzyme or a hormone, Examples include, but are not limited to, insulin, interferons, growth factors, &agr;-chymotrypsin interleukins, calcitonin, growth hormones, leuprolide, colony-stimulating factors and DNase. Insulin is a preferred embodiment, and is a desirable therapeutic is for pulmonary delivery.
Ionic Substances
Any suitable ionic substance may be used in the invention. A preferred substance is a detergent. The substance is preferably anionic when proteins or peptides are to be incorporated into the HDCs. When polynucleotides or negatively charged proteins are the active agent, the substance should preferably be cationic. Suitable anionic substances include salts, e.g. sulphates, sulphonates, phosphates and carboxylates.
Examples of suitable anionic detergents include sodium dodocyl sulphate (SDS), sodium docusate (AOT), phosphatidylinositol (PPI), 1,2-dipalmitoyl-sn-glycero-3-phosphatidic acid sodium salt (DPPA.Na), 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol sodium salt (DPPG.Na) and sodium oleate. Examples of suitable cationic detergents include benzalkonium chloride (BAC), hexadecyltrimethylammonium bromide (CTAB) and dodecyltrimethylammonium bromide (DoTAB).
Preferably, the detergent should be pharmaceutically acceptable. In particular, the detergent should be suitable for pulmonary delivery.
Organic Solvents
Any suitable organic solvent may be used in the present invention. Polar or non-polar solvents may be used depending on the active agent. In general, the solvent will be one that is pharmaceutically acceptable. Suitable solvents include, but are not limited to, ethanol, propanol, isopropanol, 1-octanol, acetone, ether, ethyl acetate, ethyl formate, dichloromethane (DCM), hexane and methanol.
Hydrophobically-derivatised Carbohydrates (HDCs)
The HDC may be any of those known in the art. Preferably, the HDC forms an amorphous glass with a high Tg, on drying.
Preferably, the HDC is capable of forming a glass with a Tg greater than 20° C., more preferably greater than 30° C., and most preferably greater than 40° C.
As used herein, “HDC” refers to a wide variety of hydrophobically-derivatised carbohydrates where at least one hydroxyl group is substituted with a hydrophobic moiety including, but not limited to, esters and ethers.
Numerous examples of suitable HDCs are described in WO-A-96/0397

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dry powder compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dry powder compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dry powder compositions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3047414

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.