Dry mortars with improved processing properties

Compositions: coating or plastic – Coating or plastic compositions – Inorganic settable ingredient containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C106S726000, C106S733000, C106S737000, C106S738000

Reexamination Certificate

active

06660079

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to cementitious dry mortars modified with a polymer powder composition and to their use as adhesives and coating materials.
2. Background Art
Mixtures of cement and water-redispersible polymer powders are known. The redispersible powder is added as an organic binder to improve adhesion to the substrate and the flexibility of the cured or “set” mixture. Further ingredients of these mixtures include fillers and also thickeners for controlling the rheological properties. Conventional additives also include dispersants, cement plasticizers, and additives for accelerating or retarding the setting of the cement. One example of a mortar base mix is disclosed in DE-A 1951171.
Water-containing, settable mixtures are prepared by admixing the dry components with water, and are then used, for example, in construction adhesives, troweling compositions, reinforcing mortars for exterior insulation and finish systems, and as adhesives for bonding wood flooring. Such compositions have a relatively short pot life, which depending on application, may range from a fraction of an hour up to several hours. The disadvantage of this relatively short pot life is that mortars which cannot be processed promptly are no longer useable and must therefore be disposed of. Especially when cementitious compounds are being processed by machine, the short pot life may result in premature solidification of the material in the machine and its consequent blockage.
In order to delay the setting of cementitious compounds, retardants are frequently used. Retardants have been selected from hydroxycarboxylic acids or dicarboxylic acids or salts thereof, as well as saccharides. Examples include oxalic acid, succinic acid, tartaric acid, gluconic acid, citric acid, sucrose, glucose, fructose, sorbitol and pentaerythritol. Further examples of retarders are polyphosphates, metaphosphoric acid, and borax. A disadvantage associated with the use of such retardants is that although the cement compound remains processable, the water resistance of the set mixture is greatly decreased.
From EP-A 338293 it is known that the mode of action of cement plasticizers based on olefin-maleic anhydride copolymers may be improved by combination with zinc oxide, since complexation of the copolymers with zinc ions prevents the formation of ineffective, water-soluble olefin-maleic acid copolymers by hydrolysis of the anhydride functionality.
SUMMARY OF THE INVENTION
It is an object of the invention to modify cementitious mortar compounds so that their setting is effectively retarded, without significant reduction in the water resistance of the set cement compositions. These and other objects are achieved by providing a dry cementitious mortar mix which contains, in addition to conventional ingredients, a redispersible polymer powder and a most minor quantity of specific zinc compounds, preferably also in conjunction with an alkali metal or alkaline earth metal hydroxide.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
The invention provides cementitious dry mortars comprising
a) from 0.5 to 80% by weight of cement,
b) from 0 to 97% by weight of fillers,
c) from 0 to 3.5% by weight of thickeners, wherein a polymer powder composition is present, with
d) from 1.0 to 80% by weight of redispersible polymer powder,
e) from 0.02 to 4.0% by weight of one or more compounds from the group consisting of zinc oxide, zinc hydroxide, and zinc hydroxide carbonate,
f) from 0 to 30% by weight of alkali metal hydroxide and/or alkaline earth metal hydroxide,
based in each case on the overall weight of the dry mortar, the percentages by weight adding up to 100% by weight.
The cement fraction a) is preferably from 0.5 to 40% by weight, with particular preference from 8 to 16% by weight. Preference is given to using Portland cement.
Suitable fillers b) are quartz sand, quartz flour, calcium carbonate, dolomite, aluminum silicates, talc or mica, or else lightweight fillers such as pumice, foamed glass, aerated concrete, perlites or vermiculites. Mixtures of said fillers may also be used. The filler fraction is preferably from 10 to 90% by weight, with particular preference from 75 to 90% by weight.
Examples of thickeners c) are polysaccharides such as cellulose ethers and modified cellulose ethers, starch ethers, guar gum or xanthan gum, phyllosilicates, polycarboxylic acids such as polyacrylic acid and the partial esters thereof, polyvinyl alcohols, which optionally have been acetalized and/or hydrophobically modified, casein, and associative thickeners. It is also possible to use mixtures of these or other thickeners. Preference is given to the cellulose ethers, modified cellulose ethers, optionally acetalized and/or hydrophobically modified, polyvinyl alcohols, and mixtures thereof. It is preferred to use from 0.05 to 2.5% by weight, with particular preference from 0.05 to 0.5% by weight, of thickeners.
Water-redispersible polymer powders d) are those which in water break down into primary particles, which are then dispersed (“redispersed”) in water. Suitable polymers include those based on one or more monomers from the group embracing vinyl esters of unbranched or branched alkylcarboxylic acids having from 1 to 15 carbon atoms, methacrylic esters and acrylic esters of alcohols having from 1 to 10 carbon atoms, vinyl aromatics, olefins, dienes, and vinyl halides. It is also possible to use mixtures of these polymers. Preference is given to using from 1 to 10% by weight of water-redispersible polymer powders d).
Preferred vinyl esters are vinyl acetate, vinyl propionate, vinyl butyrate, vinyl 2-ethylhexanoate, vinyl laurate, 1-methylvinyl acetate, vinyl pivalate, and vinyl esters of alpha-branched monocarboxylic acids having from 5 to 11 carbon atoms, examples being VeoVa5
R
, VeoVa9
R
, VeoVa10
R
or VeoVa11
R
(trade names of Shell). Preferred methacrylic esters or acrylic esters are methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, n-butyl acrylate, n-butyl methacrylate, and 2-ethylhexyl acrylate. Preferred vinylaromatics are styrene, methylstyrene, and vinyltoluene. A preferred vinyl halide is vinyl chloride. The preferred olefins are ethylene and propylene, and the preferred dienes are 1,3-butadiene and isoprene.
If desired, the polymers may also contain from 0.1 to 10% by weight, based on the overall weight of the polymer, of functional comonomers. These functional comonomers may include ethylenically unsaturated monocarboxylic or dicarboxylic acids such as acrylic acid; ethylenically unsaturated carboxamides such as (meth)acrylamide; ethylenically unsaturated sulfonic acids and/or their salts, preferably vinylsulfonic acid; polyethylenically unsaturated comonomers, examples being divinyl adipate, diallyl maleate, allyl methacrylate and triallyl cyanurate; and/or N-methylol (meth)acrylamides and their ethers, for example their isobutoxy or n-butoxy ethers.
Particularly preferred polymers are those listed below, the weight percentages adding up to 100% by weight together where appropriate with the fraction of functional comonomer units:
From the group of the vinyl ester polymers: vinyl acetate polymers; vinyl acetate-ethylene copolymers with an ethylene content of from 1 to 60% by weight; vinyl ester-ethylene-vinyl chloride copolymers with an ethylene content of from 1 to 40% by weight and a vinyl chloride content of from 20 to 90% by weight; vinyl acetate copolymers with from 1 to 50% by weight of one or more copolymerizable vinyl esters such as vinyl laurate, vinyl pivalate, vinyl esters of an alpha-branched carboxylic acid, especially Versatic acid vinyl esters (VeoVa9
R
, VeoVa10
R
, VeoVa11
R
), which may also contain from 1 to 40% by weight of ethylene; and vinyl acetate-acrylic ester copolymers with from 1 to 60% by weight of acrylic ester, especially n-butyl acrylate or 2-ethylhexyl acrylate, and which may also contain from 1 to 40% by weight of ethylene.
From the group of the (meth)acrylic ester polymers: polym

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dry mortars with improved processing properties does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dry mortars with improved processing properties, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dry mortars with improved processing properties will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3104987

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.