Dry mix formulation for bisphosphonic acids

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Tablets – lozenges – or pills

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06517867

ABSTRACT:

BACKGROUND OF THE INVENTION
The pharmaceutical industry employs various methods for compounding pharmaceutical agents in tablet formulations. In particular, wet granulation is one of the most prevalent methods.
A variety of bisphosphonic acids have been disclosed as being useful in the treatment and prevention of diseases involving bone resorption. Representative examples may be found in the following: U.S. Pat. No. 3,962,432; U.S. Pat. No. 4,054,598; U.S. Pat. No. 4,267,108; U.S. Pat. No. 4,327,039; U.S. Pat. No. 4,621,077; U.S. Pat. No. 4,624,947; U.S. Pat. No. 4,746,654; U.S. Pat. No. 4,922,077; and EPO Patent Pub. No. 0,252,504. Standard methods for tablet formulation of bisphosphonic acids, however, suffer serious difficulties.
In particular, bisphosphonic acids which bear a basic nitrogen-containing functionality may interact with the lactose of standard formulations resulting in discoloration, instability and potency loss. This degradation of the active ingredient is particularly pronounced in the presence of water and/or elevated temperature. It is speculated that this incompatibility is specifically due to the Maillard (or “browning”) reaction in which the free amino group of the bisphosphonic acid reacts with the “glycosidic” hydroxyl group of a sugar (such as lactose) ultimately resulting in the formation of brown pigmented degradates. Although this problem may be avoided by the elimination of lactose, the use of lactose as an inert diluent is generally desirable.
The present invention solves this problem by providing a tablet formulation and process therefor that avoids such interaction between the bisphosphonic acid and the lactose in the formulation. In addition, the present invention also provides a processing advantage since it requires only blending of the ingredients without granulation or addition of water prior to compression.
DESCRIPTION OF THE INVENTION
The present invention is directed in a first embodiment to a process for the preparation of pharmaceutical compositions of bisphosphonic acids by direct compression (dry mix) tablet formulation; This process employs a blend of a bisphosphonic acid and minimal amounts of other processing aids with no water added. The tablet formulation is prepared by mixing the formulation ingredients with no hydration (i.e. no additional water is added to the mixture) prior to direct compression.
More specifically, this embodiment of the present invention concerns a process for the preparation of a tablet containing a bisphosphonic acid as an active ingredient which process comprises:
forming a mixture by mixing the active ingredient with:
a diluent,
a dry binder,
a disintegrant,
and optionally one or more additional ingredients selected from the group consisting of: compression aids, flavors, flavor enhancers, sweeteners and preservatives;
lubricating the mixture with a lubricant; and compressing the resultant lubricated mixture into a desired tablet form.
The disclosed process may be used to prepare solid dosage forms, particularly tablets, for medicinal administration.
Preferred diluents include lactose. In particular, anydrous lactose is preferred from the flow processing point of view, although hydrous fast flow lactose may also be employed.
A preferred dry binder is cellulose. In particular, microcrystalline cellulose is preferred. Microcrystalline cellulose is available commercially under the trade name “Avicel” from FMC Corporation.
The disintegrant may be one of several modified starches or modified cellulose polymers, in particular, crosscarmellose sodium is preferred. Crosscarmellose sodium NF Type A is commercially available under the trade name “Ac-di-sol”.
Preferred lubricants include magnesium stearate.
Examples of the bisphosphonic acids which may be employed as active ingredients in the instant invention include:
4-amino-1-hydroxybutylidene-1,1-bisphosphonic acid;
N-methyl-4-amino-1-hydroxybutylidene-1,1-bisphosphonic acid;
4-(N,N-dimethylamino)-1-hydroxybutylidene-1,1-bisphosphonic acid;
3-amino-1-hydroxypropylidene-1,1-bis-phosphonic acid;
3-(N,N-dimethylamino)-1-hydroxypropylidene-1,1-bisphosphonic acid;
1-hydroxy-3-(N-methyl-N-pentylamino)propylidene-1,1-bisphosphonic acid;
1-hydroxy-2-[3-pyridyl]ethylidene-1,1-bis-phosphonic acid; and
4-(hydroxymethylene-1,1-bisphosphonic acid)-piperidine;
or a pharmaceutically acceptable salt thereof.
Methods for the preparation of bisphosphonic acids may be found in, e.g., U.S. Pat. No. 3,962,432; U.S. Pat. No. 4,054,598; U.S. Pat. No. 4,267,108; U.S. Pat. No. 4,327,039; U.S. Pat. No. 4,407,761; U.S. Pat. No. 4,621,077; U.S. Pat. No. 4,624,947; U.S. Pat. No. 4,746,654; U.S. Pat. No. 4,922,077; and EPO Patent Pub. No. 0,252,504. In particular, methods for the preparation of 4-amino-1-hydroxy-butylidene-1,1-bisphosphonic acid and 4-amino-1-hydroxy-butylidene-1,1-bisphosphonic acid monosodium salt trihydrate may be found in U.S. Pat. No. 4,407,761 and U.S. Pat. No. 4,922,077, respectively.
The pharmaceutically acceptable salts of bisphosphonic acids may also be employed in the instant invention. Examples of base salts of bisphosphonic acids include ammonium salts, alkali metal salts such as potassium and sodium (including mono-, di- and tri-sodium) salts (which are preferred), alkaline earth metal salts such as calcium and magnesium salts, salts with organic bases such as dicyclohexylamine salts, N-methyl-D- glucamine, and salts with amino acids such as arginine, lysine, and so forth. The non-toxic, physiologically acceptable salts are preferred. The salts may be prepared by methods known in the art, such as in U.S. Pat. No. 4,922,077.
In the present invention it is preferred that the bisphosphonic acid is 4-amino-1-hydroxybutylidene-1,1-bisphosphonic acid. It is even more preferred that the bisphosphonic acid is a sodium salt of 4-amino-1-hydroxybutylidene-1,1-bisphosphonic acid, in particular, 4-amino-1-hydroxybutylidene-1,1-bisphosphonic acid monosodium salt trihydrate.
Another embodiment of the present invention is a direct compression pharmaceutical composition, such as a tablet, comprising a bisphosphonic acid, which is prepared by the disclosed process. In general, these pharmaceutical compositions comprise by weight, about 0.5 to 40% by weight of a bisphosphonic acid as an active ingredient; and from about 60 to 99.5% by weight of processing aids with no water added. More specifically, the processing aids are a diluent, a dry binder, a disintegrant and a lubricant. Preferred processing aids include: anhydrous lactose or hydrous fast flow lactose; microcrystalline cellulose; croscarmallose sodium; and magnesium stearate.
Preferred pharmaceutical compositions comprise about 0.5 to 40% by weight of a bisphosphonic acid as an active ingredient; about 10 to 80% by weight of anhydrous lactose or hydrous fast flow lactose; about 5 to 50% by weight of microcrystalline cellulose; about 0.5 to 10% by weight of croscarmallose sodium; and about 0.1 to 570 by weight of magnesium stearate.
The preferred pharmaceutical compositions are generally in the form of tablets. The tablets may be, for example, from 50 mg to 1.0 g in net weight, more preferably 100 to 500 mg net weight, and even more preferably 200 to 300 mg net weight.
More preferred pharmaceutical compositions in accordance with the present invention comprise: about 0.5 to 25% by weight of a bisphosphonic acid selected from 4-amino-1-hydroxybutylidene-1,1-bisphosphonic acid and 4-amino-1-hydroxybutylidene-1,1-bisphosphonic acid monosodium salt trihydrate; about 30 to 70% by weight of anhydrous lactose or hydrous fast flow lactose; about 30 to 50% by weight of microcrystalline cellulose; about 0.5 to 5% by weight of croscarmallose sodium; and about 0.1 to 2 by weight of magnesium stearate.
Especially preferred pharmaceutical compositions comprise about 1 to 25% of the active ingredient, about 40 to 60% by weight of anhydrous lactose; about 35 to 45% by weight of microcrystalline cellulose; about 0.5 to 2% by weight of croscarmallose sodium; and about 0.1 to 1% by weight of magnesium stearate. Preferred phar

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dry mix formulation for bisphosphonic acids does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dry mix formulation for bisphosphonic acids, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dry mix formulation for bisphosphonic acids will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3140787

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.