Metal treatment – Process of modifying or maintaining internal physical... – Processes of coating utilizing a reactive composition which...
Reexamination Certificate
2001-01-24
2004-06-01
Oltmans, Andrew L. (Department: 1742)
Metal treatment
Process of modifying or maintaining internal physical...
Processes of coating utilizing a reactive composition which...
C148S257000, C148S262000, C106S014120, C252S389200
Reexamination Certificate
active
06743302
ABSTRACT:
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
BACKGROUND OF THE INVENTION
This invention relates to a generically well known process variously called “phosphating”, “phosphatizing”, or “phosphate conversion coating” in which a metallic substrate is coated with an adherent coating containing phosphate anions and metal cations, at least some of these metal cations being those corresponding to one or more metallic constituent(s) of the substrate. If the phosphating composition also contains divalent cations that can form only sparingly water-soluble phosphates, the conversion coating formed also normally includes some of these divalent cations from the phosphating composition.
Normally, a phosphate coating is formed by chemical reaction between the metal substrate and an aqueous liquid variously called a “phosphating” or “phosphatizing” composition, solution, bath, or a like term; in some instances, the formation of the coating may be aided by, or even completely dependent on, application of an electric current. If the phosphating composition is in contact with the substrate for at least about five seconds at a temperature not more than 70° C. and any liquid phosphating composition remaining in contact with the conversion coating thus formed is rinsed off before the substrate treated with it is dried, the phosphate coating formed generally is microcrystal line, particularly if the substrate and/or the phosphating composition contains substantial amounts of iron and/or zinc. If the phosphating composition is applied to the substrate and dried in place without rinsing, the coating formed is usually predominantly amorphous.
The presence of a phosphate coating on a metal substrate normally serves one or both of two major functions: (1) increasing the corrosion resistance of the substrate by comparison with an otherwise identical metal substrate that has no such conversion coating, an increase that may be measured either with or without a subsequent paint or similar protective coating and (2) serving as a strongly adherent “carrier” for an externally applied lubricant material that facilitates mechanical cold working.
A major object of this invention is to achieve an additional benefit from a phosphate conversion coating in an operation of the former type when the phosphating composition is dried into place without rinsing. The specific benefit achieved is improved adhesion to subsequently applied paint, elastomers, sealants, and like coatings and adhered structural members, particularly when the conversion coated object that has been painted or adhered to an elastomeric and/or sealant type structural member is to be mechanically deformed after having been thus painted or adhered. (A “sealant” may be defined for purposes of this description as an elastomeric material that serves at least one of the uses of (i) forming a load-bearing joint, (ii) excluding dust, dirt, moisture, and other chemicals that include a liquid or gas, (iii) reducing noise and vibrations, (iv) insulating, and (v) filling spaces). Other more detailed objects of the invention will become apparent from the description below.
Except in the claims and the operating examples, or where otherwise expressly indicated, all numerical quantities in this description indicating amounts of material or conditions of reaction and/or use are to be understood as modified by the word “about” in describing the broadest scope of the invention. Practice within the numerical limits stated is generally preferred, however. Also, throughout the description, unless expressly stated to the contrary: percent, “parts of”, and ratio values are by weight or mass; the term “polymer” includes “oligomer”, “copolymer”, “terpolymer” and the like; the description of a group or class of materials as suitable or preferred for a given purpose in connection with the invention implies that mixtures of any two or more of the members of the group or class are equally suitable or preferred; description of constituents in chemical terms refers to the constituents at the time of addition to any combination specified in the description or of generation in situ within the composition by chemical reaction(s) noted in the specification between one or more newly added constituents and one or more constituents already present in the composition when the other constituents are added, and does not preclude unspecified chemical interactions among the constituents of a mixture once mixed; specification of constituents in ionic form additionally implies the presence of sufficient counterions to produce electrical neutrality for the composition as a whole and for any substance added to the composition; any counterions thus implicitly specified preferably are selected from among other constituents explicitly specified in ionic form, to the extent possible; otherwise such counterions may be freely selected, except for avoiding counterions that act adversely to an object of the invention; the word “mole” means “gram mole”, and the word itself and all of its grammatical variations may be used for any chemical species defined by all of the types and numbers of atoms present in it, irrespective of whether the species is ionic, neutral, unstable, hypothetical, or in fact a stable neutral substance with well defined molecules; an abbreviation once defined may be used thereafter with either exactly the same meaning or a grammatically varied meaning as indicated by the context and is to be understood as having the same meaning, Mutatis mutandis, as when first defined; the term “paint” and its grammatical variations are to be understood as including any material or process that may be known by a more specialized term, such as “enamel”, “varnish”, “lacquer”, “shellac”, “electropaint”, “top coat”, “clear coat”, “color coat”, “autodeposited coating”, “radiation curable coating”, “siccative coating”, and the like and their grammatical variations; and the terms “solution”, “soluble”, “homogeneous”, and the like are to be understood as including not only true equilibrium solutions or homogeneity but also dispersions that show no visually detectable tendency toward phase separation over a period of observation of at least 100, or preferably at least 1000, hours during which the material is mechanically undisturbed and the temperature of the material is maintained within the range of 18-25° C.
BRIEF SUMMARY OF THE INVENTION
It has been found that the above stated object of the invention can be achieved by combining an adhesion-promoting substance with a conventional liquid phosphating composition. Specific embodiments of the invention include phosphating compositions containing one or more types of adhesion-promoting substances; processes for forming a phosphate conversion coating on a metal substrate by forming a liquid coating of an aqueous solution containing ingredients of a conventional phosphating composition and an adhesion-promoting substance over the metal substrate, and then drying the liquid layer in place on the metal substrate, without rinsing off any of the liquid layer with additional water and without any need for application of electromotive force from an external source; articles of manufacture including surfaces treated by such a process; and/or surfaces having a phosphate conversion coating that includes an adhesion-promoting substance and/or a product formed by drying an adhesion-promoting substance.
DETAILED DESCRIPTION OF THE INVENTION AND PREFERRED EMBODIMENTS
Non-exclusive examples of conventional phosphating compositions suitable for combining with at least one film-forming organic substance to produce a composition according to this invention include those described in the following U.S. Patents and applications therefor, the entire disclosures of which, except to any extent that they may be inconsistent with any explicit statement herein or with other more recently developed knowledge in the art, are hereby incorporated herein by reference: U.S. National application Ser. Nos. 08/344,829; 08/464,609; 08/569,177, now abandoned; 08
Cuyler Brian B.
Goodreau Bruce H.
Miller Robert W.
Prescott Thomas J.
Cameron Mary K.
Harper Stephen D.
Henkel Corporation
Oltmans Andrew L.
LandOfFree
Dry-in-place zinc phosphating compositions including... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Dry-in-place zinc phosphating compositions including..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dry-in-place zinc phosphating compositions including... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3308948