Dry heat sterilization of a glucocorticosteroid

Organic compounds -- part of the class 532-570 series – Organic compounds – Heterocyclic carbon compounds containing a hetero ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C540S084000, C540S085000, C514S174000, C514S176000, C514S177000, C514S178000

Reexamination Certificate

active

06392036

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a process for sterilization of a powdered form of a glucocorticosteroid, sterile glucocorticosteroids, sterile formulations containing glucocorticosteroids and use thereof in the treatment of an allergic and/or inflammatory condition of the nose or lungs.
BACKGROUND OF THE INVENTION
Various methods have been proposed in the past for the sterilization of glucocorticosteroids. PT-A-69652 discloses the cold sterilization of micronized glucocorticosteroids using mixtures of ethylene oxide and carbon dioxide, since, according to PT-A-69652, steroids in powder form are not stable at temperatures above 60° C. Specific examples of glucorticosteroids are prednacindone, dexamethasone and prednisolone, and salts, esters and fluoro derivatives thereof, including dexamethasone acetate, dexamethasone phosphate, prednisolone pivalate and 9-alphafluoro prednisolone. However, ethyleneoxide is toxic and when it is used to sterilize glucocorticosteroids it has been found that the residual amounts of the ethylene oxide contravene pharmaceutical guidelines which require very low levels of residual ethylene oxide. Accordingly this method has been found to be unsuitable for producing therapeutically acceptable glucocorticosteroids and formulations thereof.
U.S. Pat No. 3,962,430 discloses a method for the production of sterile isotonic solutions of medicinal agents, which comprises adding the agent to a saturated solution of sodium chloride in water at 100° C. and then heating the mixture at 100-130° C. This method is not suitable for suspensions of fine particles of glucocorticosteroids which are intended for inhalation because the water, and the heating and cooling involved, produce unfavorable changes in the size of the particles. Indeed it can lead to the formation of bridges between the fine particles producing large, hard aggregates which will not deaggregate into the desired fine particles upon administration.
A putative alternative is dry heat sterilization. According to the European Pharmacopoeia (1996, pp. 283-4) a normal heat sterilization process runs at 180° C. for 30 min or at a minimum of 160° C. for at least 2 hours. According to Pharmacopoeia Nordica (1964, pp. 16) such a sterilization can be carried out at 140° C. for 3 hours. However at the temperatures of these processes glucocorticosteroids suffer significant degradation and are subject to changes in their surface structure.
Sterilization by &bgr;- or &ggr;-irradiation is also known. Indeed Illum and Moeller in Arch. Pharm. Chemi. Sci., Ed. 2, 1974, pp. 167-174 recommend the use of such irradiation to sterilize glucocorticosteroids. However when such irradiation is used to sterilize certain finely divided, e.g. micronized, glucocorticosteroids, they are significantly degraded.
WO-A-96/09814 to Andaris Ltd. relates to spray-dried particles of a water-soluble material with a mass median particle size of 1 to 10 &mgr;m. The aim of the invention is to produce uniform and reproducible particles for use in dry powder inhalers. The water-soluble material is preferably a human protein or a fragment thereof, in natural or recombinant form, e.g. human serum albumin (HSA), alpha-1 antitrypsin or alcohol dehydrogenase. Also combinations of an active material with a carrier were produced e.g. budesonide and lactose. It is stated generally that the microparticles produced can be sterile without teaching how this could or would be achieved nor showing any proof thereof.
WO-A-96/32095 to Astra AB relates to a process for the preparation of respirable particles by dissolving an inhalation compound in a solvent, introducing the resulting solution containing the inhalation compound in droplet form or as a jet stream into an anti-solvent which is miscible with the solvent and which is under agitation. Budesonide with a mass median diameter (MMD) of less than 10 &mgr;m is produced with the process. There is no information in WO-A-96/32095 about sterilization or sterile particles.
WO-A-92/11280 to Instytut Farmaceutyczny relates to a method of obtaining (22R) diastereoisomer of budesonide by a condensation reaction followed by crystallizing the crude product of condensation from ethanol. The obtained 21-acetate of budesonide (22R) is hydrolyzed and the product thus obtained is crystallized from ethyl acetate. The content of (22S) diastereoisomer of budesonide is 1% or less. There is no information in WO-A-92/11280 about sterilization or sterile particles.
We have also found that attempts at terminal sterilization of the pharmaceutical formulations, especially suspensions, e.g. aqueous suspensions, of glucocorticosteroids have all proved unsatisfactory. Such suspensions can not normally be sterilized by sterile filtration as most of the particles of glucocorticosteroid will be retained on the filter. We have also shown that moist heat sterilization, e.g. steam treatment of glass vials containing the product, leads to an unacceptable change in particle size.
Various aqueous suspensions of finely divided glucocorticosteroids are known, e.g. the budesonide-containing product known as Pulmicort® nebulising suspension. (Pulmicort® is a trademark of Astra AB of Sweden). Similar formulations of fluticasone propionate are known from WO-A-95/3 1964.
Accordingly a new process for the sterilization of glucocorticosteroids (and formulations containing them) is required.
Surprisingly we have now found that effective sterilization of dry glucocorticosteroids can be carried out at a significantly lower temperature than that considered necessary for the heat sterilization of other substances. Such sterile glucocorticosteroids can be used in the preparation of sterile formulations containing them.
DESCRIPTION OF THE INVENTION
According to the invention there is provided a process for the sterilization of a glucocortisteroid, which process comprises heat treating the glucocorticosteroid in the form of a powder at a temperature of from 100 to 130° C. The process is preferably carried out at a temperature of from 110 to 120° C., more preferably at about 110° C., preferably for up to about 24 hours, more preferable up to 10 hours, e.g. from 1 to 10 hours. The process is conveniently carried out under atmospheric conditions, i.e. in air, but may also be carried out under an inert gas atmosphere, e.g. an atmosphere of argon or nitrogen.
Surprisingly we have found that this process kills many more spores when applied to the glucocorticosteroid budesonide than when applied to the comparison substance calcium stearate. Even better results were obtained with the glucocorticosteroid rofleponide.
It is believed, but we do not intend to be limited by this explanation, that the unexpectedly low temperature at which the glucocorticosteroids can be sterilized indicates that the glucocorticosteroid may provide some synergistic effect, when taken together with the heat treatment, in destroying the spores.
The glucocorticosteroid used in the invention is preferably an anti-inflammatory glucocorticosteroid, e.g. for use in nasal and oral inhalation. Examples of glucocorticosteroids which may be used in the present invention include betamethasone, fluticasone (e.g. as propionate), budesonide, tipredane, dexamethasone, beclomethasone (e.g. as dipropionate), prednisolone, fluocinolone, triamcinolone (e.g. as acetonide), momethasone (e.g. as furoate), rofleponide (e.g. as palmitate), flumethasone, flunisolide, ciclesonide, deflazacort, cortivazol,16&agr;,17&agr;-butylidenedioxy-6&agr;,9&agr;-difluoro-11&bgr;, 21-dihydroxy-pregna-1,4-diene-3 ,20-dione; 6&agr;,9&agr;-difluoro-11&bgr;-hydroxy-16&agr;,17&agr;-butylidenedioxy-17&bgr;-methylthio-androsta-4-ene-3-one;16&agr;,17&agr;-butylidenedioxy-6&agr;,9&agr;-difluoro-11&bgr;-hydroxy-3-oxo-androsta-1,4-diene-17&bgr;-carbothioic acid S-methyl ester; methyl 9&agr;-chloro-6&agr;-fluoro-11&bgr;-hydroxy-16&agr;-methyl-3-oxo-17&agr;-propionyloxy-androsta-1,4-diene-17&agr;-carboxylate; 6&agr;,9&agr;-difluoro-11&bgr;-hydroxy-16&agr;-methyl-3-oxo-17&agr;-propionyloxy-androsta-1,4-diene-17&bgr;-carbothioic

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dry heat sterilization of a glucocorticosteroid does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dry heat sterilization of a glucocorticosteroid, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dry heat sterilization of a glucocorticosteroid will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2841346

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.