Drug resistance and multidrug resistance modulators

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Heterocyclic carbon compounds containing a hetero ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S157000

Reexamination Certificate

active

06180633

ABSTRACT:

This invention relates to the field of synthetic organic chemistry. Specifically, the invention relates to pharmaceutical compounds that are useful in the field of drug resistance and multidrug resistance.
BACKGROUND OF THE INVENTION
Among the problems faced in certain types of drug therapy, including cancer chemotherapy and malaria drug regimens. The resistance means, for example, that cancerous tumors that have responded well initially to a particular drug or drugs, later develop a tolerance to the drug(s) and cease responding. Drug resistance is the name given to the circumstance when a disease (e.g., malaria or cancer, does not respond to a treatment drug or drugs. Drug resistance can be either intrinsic, which means the disease has never been responsive to the drug or drugs, or it can be acquired, which means the disease ceases responding to a drug or drugs that the disease had previously been responsive to. Multidrug resistance is a specific type of drug resistance that is characterized by cross-resistance of a disease to more than one functionally and/or structurally unrelated drugs. Multidrug resistance in the field of cancer, is discussed in greater detail in “Detoxification Mechanisms and Tumor Cell Resistance to Anticancer Drugs,” by Kuzmich and Tew, particularly section VII “The Multidrug-Resistant Phenotype (MDR),”
Medical Research Reviews,
Vol. 11, No. 2, 185-217, (Section VII is at pp. 208-213) (1991); and in “Multidrug Resistance and Chemosensitization: Therapeutic Implications for Cancer Chemotherapy,” by Georges, Sharom and Ling,
Advances in Pharmacology,
Vol. 21, 185-220 (1990).
Treatment of drug and multidrug resistance typically involves the coadministration of a drug suitable for treatment of the disease and a compound known as a drug resistance modulator or a multidrug resistance modulator. Drug and multidrug resistance modulators act through various mechanisms to cause a drug or drugs suitable for treatment of a disease to begin and/or continue to function as a therapeutic agent.
One known mechanism by which certain drug and multidrug resistance modulators function is by their interaction with a protein that is variously called Multidrug-Resistance 1 protein (MDR1), Pleiotropic-glycoprotein (P-glycoprotein), Pgp or P170, referred to herein as “P-glycoprotein”. P-glycoprotein is endogenous in cell membranes, including certain drug resistant cells, multidrug resistant tumor cells, gastrointestinal tract cells, and the endothelial cells that form the blood brain barrier. P-glycoprotein acts as an efflux pump for the cell. Certain substances, undesirably including treatment drugs for various diseases, are pumped out of the cell by the P-glycoprotein prior to their having an effect on the cell. Drug and multidrug resistance modulators interact with P-glycoprotein. This interaction interferes with the P-glycoprotein “drug efflux pump” action thereby permitting the treatment drug to enter and remain in the cell and have its intended effect.
In addition to inhibiting the efflux of various drugs from tumor cells, drug and multidrug resistance modulators that interact with P-glycoprotein also function to enhance oral bioavailability of nutrients or drugs, that are affected by the action of P-glycoprotein, through the gastrointestinal tract. Oral bioavailability refers to the ability of a drug that is administered orally to be transported across the gastrointestinal tract and enter into the bloodstream. A drug or multidrug resistance modulator that interacts with P-glycoprotein should enhance the oral bioavailability of a drug or nutrient by interfering with the efflux pump action of P-glycoprotein.
P-glycoprotein is believed to be present on both sides of the endothelial cell layer of the capillary tube of the brain. It is this capillary tube that functions physiologically as the blood-brain barrier. The blood brain barrier is believed to restrict the entry of many different types of compounds, including drugs whose site of action is within the brain, from entering the brain. Certain drug and multidrug resistance modulators that interact with P-glycoprotein also can function to enhance bioavailability of a drug to the brain by interacting with P-glycoprotein and thus interfering with the drug efflux pump action of P-glycoprotein on the treatment drug. This interference permits more of the treatment drug to cross the blood-brain barrier into the brain and remain there.
Certain drug or multidrug resistance modulators that interact with P-glycoprotein are known. They include: verapamil (a calcium channel blocker that lowers blood pressure and has also been found effective in vitro for treating drug-resistant malaria), certain steroids, trifluoroperazine (a central nervous system agent), vindoline, and reserpine (an &agr;-2 blocker with central nervous system properties).
U.S. Pat. No. 5,112,817 to Fukazawa et al. discloses certain quinoline derivatives useful for the treatment of multidrug resistance in cancer. One of the initially promising active agents, MS-073, was found to be active in in vitro testing. However, MS-073 was found to have poor oral bioavailability and to suffer from instability problems in solution. Other compounds in the series, such as the biphenylmethylcarbonyl derivative MS-209, have been found to have better stability and oral bioavailability, but require the administration of higher doses to be effective as a multidrug resistance modulator.
PCT Patent Application WO 94/24107 discloses 10,11-cyclopropyldibenzosuberane derivatives which are described as being useful as multidrug resistance modulators.
There remains a need to discover compounds that will interact with P-glycoprotein so that they will act as drug and multidrug resistance modulators to treat drug and multidrug resistance in various diseases. Additional compounds that interact with P-glycoprotein are also needed to act to enhance bioavailability of a drug or drugs to the brain and/or to act to enhance oral bioavailability of a drug or drugs.
SUMMARY OF THE INVENTION
The present invention provides compounds of Formula (A):
where R
1
and R
2
are independently hydrogen or halo; A is —CH
2
—CH
2
—, —CH
2
—CHR
4
—CH
2
—, or —CH
2
—CHR
5
—CHR
6
—CH
2
—, where R
4
is —H, —OH, or acyloxy; one of R
5
and R
6
is —H, —OH, or acyloxy and the other is —H; and R
3
is a polyaryl; and pharmaceutically acceptable salts and solvates thereof.
The present invention also provides pharmaceutical compositions comprising a compound or pharmaceutically acceptable salt or solvate thereof of Formula (A) in association with a pharmaceutically acceptable carrier, diluent, or excipient.
The present invention further provides a method of treatment for a drug resistant disease comprising coadministering to a mammal in need thereof a resistance modulating amount of a compound or salt or solvate thereof of Formula (A) and an effective amount of a treatment drug for said drug resistant disease.
The present invention further provides a method of treatment for a multidrug resistant disease comprising coadministering to a mammal in need thereof a multidrug resistance modulating amount of a compound or salt or solvate thereof of Formula (A) and an effective amount of a treatment drug for said multidrug resistant disease.
The present invention further provides a method for enhancing bioavailability of a drug to the brain, comprising coadministering to a mammal in need thereof a therapeutically effective amount of said drug and an amount of a compound or salt or solvate thereof of Formula (A) sufficient to allow said drug to cross the blood-brain barrier and enter the brain.
The present invention further provides a method for enhancing oral bioavailability of a drug comprising administering to a mammal in need thereof a therapeutically effective amount of said drug and an amount of a compound or salt or solvate thereof of Formula (A) sufficient to allow said drug to be transported across the gastrointestinal tract and enter the bloodstream.


REFERENCES:
patent: 3133925 (1964-05-01), Cusic
patent: 4251539 (19

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Drug resistance and multidrug resistance modulators does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Drug resistance and multidrug resistance modulators, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Drug resistance and multidrug resistance modulators will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2467855

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.