Drug-loaded biological material chemically treated with genipin

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S004300, C514S356000, C530S356000, C549S396000, C424S422000, C424S423000

Reexamination Certificate

active

06624138

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to chemical modification of biomedical materials, such as collagen matrix with a naturally occurring crosslinking reagent, genipin. More particularly, the present invention relates to solidifiable collagen-containing and/or chitosan-containing biological material loaded with drug that is configured suitable for drug slow release effective for therapeutic purposes, wherein the biological material is chemically treated with a crosslinking reagent, genipin, its derivatives or analog and the process of manufacture thereof.
BACKGROUND OF THE INVENTION
Crosslinking of Biological Material
Crosslinking of biological molecules is often desired for optimum effectiveness in biomedical applications. For example, collagen, which constitutes the structural framework of biological tissue, has been extensively used for manufacturing bioprostheses and other implanted structures, such as vascular grafts, wherein it provides a good medium for cell infiltration and proliferation. However, biomaterials derived from collagenous tissue must be chemically modified and subsequently sterilized before they can be implanted in humans. The fixation, or crosslinking, of collagenous tissue increases strength and reduces antigenicity and immunogenicity. In one aspect of the present invention, crosslinking of a drug-containing biological material with genipin enables the resulting material (“biological substance”) with less antigenicity or immunogenicity, wherein the biological material comprises collagen, gelatin, elastin, chitosan, NOCC (N, O, Carboxylmethyl Chitosan), and the like that has at least one amino functional group for reaction with genipin.
Collagen sheets are also used as wound dressings, providing the advantages of high permeability to water vapor and rapid wound healing. Disadvantages include low tensile strength and easy degradation of collagen by collagenase. Crosslinking of collagen sheets reduces cleavage by collagenase and improves tensile strength. In one aspect of the present invention, a collagen strip derived of crosslinked drug-containing collagen sheets may be used to load on the periphery of a stent as a drug-eluting stent to mitigate restenosis or other abnormality. In a further aspect of the present invention, the collagen sheet or collagen strip may be made of solidifiable collagen.
Clinically, biological tissue has been used in manufacturing heart valve prostheses, small-diameter vascular grafts, ligament replacements, and biological patches, among others. However, the biological tissue has to be fixed with a crosslinking or chemically modifying agent and subsequently sterilized before they can be implanted in humans. The fixation of biological tissue or collagen is to reduce antigenicity and immunogenicity and prevent enzymatic degradation. Various crosslinking agents have been used in fixing biological tissue. These crosslinking agents are mostly synthetic chemicals such as formaldehyde, glutaraldehyde, dialdehyde starch, glyceraldehydes, cyanamide, diimides, diisocyanates, dimethyl adipimidate, carbodiimide, and epoxy compound. However, these chemicals are all highly cytotoxic which may impair the biocompatibility of biological tissue. Of these, glutaraldehyde is known to have allergenic properties, causing occupational dermatitis and is cytotoxic at concentrations greater than 10-25 ppm and as low as 3 ppm in tissue culture. It is therefore desirable to provide a crosslinking agent (synonymous to a crosslinking reagent) suitable for use in biomedical applications that is within acceptable cytotoxicity and that forms stable and biocompatible crosslinked products.
An example of a genipin-crosslinked heart valve is reported by Sung et al., a co-inventor of the present invention, (Journal of Thoracic and Cardiovascular Surgery vol. 122, pp. 1208-1218. 2001) entitled Reconstruction of the right ventricular outflow tract with a bovine jugular vein graft fixed with a naturally occurring crosslinking agent (genipin) in a canine model, entire contents of which are incorporated herein by reference. Sung et al. herein discloses genipin and its crosslinking ability to a collagen-containing biological tissue heart valve.
To achieve this goal, a naturally occurring crosslinking agent (genipin) has been used to fix biological tissue. The application Ser. No. 09/297,808 filed Nov. 04, 1997, entitled “Chemical modification of biomedical materials with genipin” and its PCT counterpart, WO 98/19718, are incorporated and cited herein by reference. The cytotoxicity of genipin was previously studied in vitro using 3T3 fibroblasts, indicating that genipin is substantially less cytotoxic than glutaraldehyde (Sung H W et al., J Biomater Sci Polymer Edn 1999;10:63-78). Additionally, the genotoxicity of genipin was tested in vitro using Chinese hamster ovary (CHO-K1) cells, suggesting that genipin does not cause clastogenic response in CHO-K1 cells (Tsai C C et al., J Biomed Mater Res 2000;52:58-65), incorporated herein by reference. A biological material (including collagen-containing or chitosan-containing substrate) treated with genipin resulting in acceptable cytotoxicity is a first requirement to biomedical applications.
In a co-pending application by one inventor of the present application, U.S. patent application Ser. No. 10/067,130 filed Feb. 4, 2002, now U.S. Pat. No. 6,545,042, entitled Acellular Biological Material Chemically Treated with Genipin, entire contents of which are incorporated herein by reference, discloses an acellular tissue providing a natural microenvironment for host cell migration to accelerate tissue regeneration. The genipin-treated biological biomaterial has reduced antigenicity and immunogenicity.
Restenosis in Angioplasty and Stenting
Atherosclerosis causes a partial blockage of the blood vessels that supply the heart with nutrients. Atherosclerotic blockage of blood vessels often leads to hypertension, ischemic injury, stroke, or myocardial infarction. Typically angioplasty and/or stenting is a remedy for such a disease, however, restenosis does occur in 30-40 percent patients resulting from intimal smooth muscle cell hyperplasia. The underlying cause of the intimal smooth muscle cell hyperplasia is mainly vascular smooth muscle injury and disruption of the endothelial lining.
Vascular injury causing intimal thickening can be from mechanical injuries due to angioplasty and/or stenting. Intimal thickening following balloon catheter injury has been studied in animals as a model for arterial restenosis that occurs in human patients following balloon angioplasty. Injury is followed by a proliferation of the medial smooth muscle cells, after which many of them migrate into the intima through fenestrate in the internal elastic lamina and proliferate to form a neointimal lesion.
Vascular stenosis can be detected and evaluated using angiographic or sonographic imaging techniques and is often treated by percutaneous transluminal coronary angioplasty (balloon catheterization). Within a few months following angioplasty, however, the blood flow is reduced in approximately 30-40 percent of these patients as a result of restenosis caused by a response to mechanical vascular injury suffered during the angioplasty or stenting procedure, as described above.
In an attempt to prevent restenosis or reduce intimal smooth muscle cell proliferation following angioplasty, numerous pharmaceutical agents have been employed clinically, concurrent with or following angioplasty. Most pharmaceutical agents employed in an attempt to prevent or reduce the extent of restenosis have been unsuccessful. The following list identifies several of the agents for which favorable clinical results have been reported: lovastatin; thromboxane A
2
synthetase inhibitors such as DP-1904; eicosapentanoic acid; ciprostene (a prostacyclin analog); trapidil (a platelet derived growth factor)]; angiotensin convening enzyme inhibitors; and low molecular weight heparin, entire contents of the above-referred drugs and their therapeutic effects are inc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Drug-loaded biological material chemically treated with genipin does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Drug-loaded biological material chemically treated with genipin, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Drug-loaded biological material chemically treated with genipin will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3007218

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.